

Lecture 8:

Sampling & Reconstruction

Contents

- 1. Motivation
- 2. Sampling Theory
- 3. Fourier Transformation
- 4. Aliasing
- 5. Stratified Sampling
- 6. Image Reconstruction

Aliasing

- Aliasing is an error arising because the *sampling* and *reconstruction* process involves *approximation*
- These errors occur because the sampling process is not able to capture all of the information from the continuously defined image function
- Aliasing can manifest itself in many ways, including jagged edges, flickering in animations, moiré patterns, *etc*.

Spatial Aliasing

• Stair cases, Moiré patterns, etc.

Moiré pattern

Temporal Aliasing

Optical Illusion: The wagon wheel effect (aliasing)

Sampling Theory

Sampling and Reconstruction

- Taking a set of point samples of f(x) (indicated by dots), we determine the value of the function at those positions
- These sample values can be used to reconstruct a function $\tilde{f}(x)$ that is an approximation to f(x)
- The <u>sampling theorem</u>, makes a precise statement about the conditions on f(x), the number of samples taken, and the reconstruction technique used under which $\tilde{f}(x)$ is exactly the same as f(x).
 - The fact that the original function can sometimes be reconstructed exactly from point samples alone is remarkable.

Sampling Theory

Fourier Transformation

- Characterize a signal (function) by its frequency
 - The higher frequency a function is, the more quickly it varies over a given region
- <u>Fourier transform</u> represents a function in the *frequency domain*

• Any periodic, continuous function can be represented as the sum of sine or cosine functions

• Any periodic, continuous function can be represented as the sum of sine or cosine functions

• Any periodic, continuous function can be represented as the sum of sine or cosine functions

$$f(x) = \sum_{k} a_k \cos \frac{2\pi}{\tau} kx + b_k \sin \frac{2\pi}{\tau} kx = \sum_{k} F(k) e^{i\frac{2\pi}{\tau}kx}$$

- k: frequency band
 - k = 0 mean value
 - k = 1 function period, lowest possible frequency
 - k = 1,5? not possible
 - k_{max} ? band limit, no higher frequency present in signal
- a_k , b_k : Fourier coefficients
- Odd function f(-x) = -f(x)
 - $a_k = 0$
 - $f(x) = \sum_k b_k \sin \frac{2\pi}{\tau} kx$
- Even function f(-x) = f(x):
 - $b_k = 0$
 - $f(x) = \sum_k a_k \cos \frac{2\pi}{\tau} kx$

.

Example:

• Square wave: a perioding odd function

Example:

• Square wave: a perioding odd function

$$f(x) = \begin{cases} 0.5 & \forall \quad 0 < (x \mod 2\pi) < \pi \\ -0.5 & \forall \quad \pi < (x \mod 2\pi) < 2\pi \end{cases}$$

More Examples

• Sine wave with positive offset

• Square wave

• Scanline of an image

Important basis functions

• Box \Leftrightarrow sinc (sinus cardinalis)

 $\operatorname{sinc}(x) = \frac{\sin(x\pi)}{x\pi}$ $\operatorname{sinc}(0) = 1$ $\int \operatorname{sinc}(x) dx = 1$

- Wide box \Rightarrow small sinc
- Negative values
- Infinite support
- Triangle \Leftrightarrow sinc²
- Gauss ⇔ Gauss

Important basis functions

• Example box function transform behavior

Transformation from the **frequency domain** to the **spatial domain**

• This formula is also knows as "Fourier synthesis equation" or inverse Fourier transform

$$f(x) = \sum_{k} F(k) e^{i\frac{2\pi}{\tau}kx}$$

Transformation from the **spatial domain** to the **frequency domain**

• The reverse operation is known as the "Fourier analysis equation" or Fourier Transform:

$$F(k) = \sum_{x} f(x)e^{-i\frac{2\pi}{\tau}kx}$$

Transformation from the **frequency domain** to the **spatial domain**

• This formula is also knows as "Fourier synthesis equation" or inverse Fourier transform:

$$f(x) = \int_{-\infty}^{\infty} F(\omega) e^{i2\pi\omega x} d\omega$$

Transformation from the **spatial domain** to the **frequency domain**

• The reverse operation is known as the "Fourier analysis equation" or Fourier Transform:

$$F(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi\omega x}dx$$

Images have discrete values and are not continuous functions

- The Fast Fourier Transform (FFT) is a divide and conquer algorithm that enables us to compute the discrete Fourier transform and its inverse in *O(n log n)* time where *n* is the number of samples
- Compute the 2D Fourier transform by applying 1D discrete Fourier transforms (*i.e.* FFTs) along each dimension

Compute the discrete Fourier transform (via FFT)

• Transform the discrete image values into another array of discrete values

Perform operations

• Efficient filtering in frequency domain

Compute the inverse discrete Fourier transform (via FFT)

There is an opinion that FFT is the most influential algorithm! Check out: *3 Applications of the (Fast) Fourier Transform ft. Mikhail Kapralov (Михаил Капралов)* <u>https://www.youtube.com/watch?v=aqa6vyGSdos</u>

• On a simple input, *e.g.* grayscale image (= constant function), the output of a Fourier analysis is also simple

Spatial Domain

Frequency Domain

• Let's imagine that our image is created using a sinusoid function in the horizontal (x) direction: $\sin \frac{2\pi}{32}x$

Spatial Domain

• How about a higher frequency: $\sin \frac{2\pi}{16} x$

Spatial Domain

• How about applying the same pattern vertically: $\sin \frac{2\pi}{16} y$

•
•

Spatial Domain

• Different sinusoidal components applied in two directions: $\sin \frac{2\pi}{32} x \times \sin \frac{2\pi}{16} y$

Spatial Domain

Spatial domain result

Spectrum

Spatial domain result

Spectrum (after low-pass filter) All frequencies above cutoff have 0 magnitude

Let's eliminate some frequencies present in these images!

Spectrum (after band-pass filter)

Spatial domain result

Spectrum (after band-pass filter)

Spatial domain result

Spatial domain result (strongest edges) Spectrum (after high-pass filter) All frequencies below threshold have 0 magnitude

The sum is the image itself!

Formal definition of sampling

- Sampling process requires us to choose a set of equally spaced sample positions and compute the function's value at those positions
- Formally, this corresponds to multiplying the function by a "shah" or "impulse train" function (an infinite sum of equally spaced delta Dirac functions)

$$\amalg_{\Delta x}(x) = \Delta x \sum_{k=-\infty}^{\infty} \delta(x - k\Delta x)$$

$$\coprod_{\Delta x}(x)f(x) = \Delta x \sum_{k=-\infty}^{\infty} \delta(x - k\Delta x)f(k\Delta x)$$

Formal definition of reconstruction

• The sample values are used to calculate a reconstructed function $\tilde{f}(x)$ by choosing a reconstruction filter function r(x) and computing the *convolution*

$$\tilde{f}(x) = (\coprod_{\Delta x}(x)f(x)) * r(x)$$

• The convolution is defined as

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt$$

 For reconstruction, convolution gives a weighted sum of scaled instances of the reconstruction filter centered at the sample points:

$$\tilde{f}(x) = \Delta x \sum_{k=-\infty}^{\infty} f(k\Delta x)r(x-k\Delta x)$$

36

Convolution of two functions f(t) and g(t):

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dx$$

- Shift one function against the other by x
- Multiply function values
- Integrate overlapping region
- Numerical convolution: Expensive operation
 - For each *x*: integrate over non-zero domain

Convolution in image domain: multiplication in Fourier domain Convolution in Fourier domain: multiplication in image domain

• Multiplication much cheaper than convolution!

Sampling

Constant & Dirac-delta function $\delta()$

- Duality
 - f(x) = K $F(\omega) = K\delta(\omega)$
- And vice versa

Shah function

- Duality: The dual of a Shah function is again a Shah function
 - Inverse wave length, amplitude scales with inverse wave length

Sampling

Continuous function

• Band-limited Fourier transform

Sampled at discrete points

• Multiplication with Shah function in spatial domain corresponds to convolution in Fourier domain

- No: good
- Yes: bad, aliasing

Definition:

- Nyquist Frequency is the highest (spatial) frequency that can be represented
- Determined by image resolution (pixel size):

Reconstruction

Only original frequency band desired

Filtering

- In Fourier domain: multiplication with windowing function around origin
- In spatial domain: convolution with Fourier transform of windowing function

Optimal filtering function

- Box function in Fourier domain
- Corresponds to *sinc()* in space domain
 - Unlimited region of support
- Spatial domain only allows approximations (limited support)

Cutting off the support is *not* a good solution

Sampling and Reconstruction

Sampling and Reconstruction

Reconstruction

• Physical output devices generate a continuous signal, even for discrete input, *e.g.*, on a computer monitor

Example

- DAC (Digital-to-Analog Converter): Sample and hold
 - Capacities and inductivities
- CRT: Phosphor and light spot
 - Afterglow on screen

Sampling with Low Frequency

Correct filtering

Space: *sinc* (conv.)

Fourier: hat (mult.)

Band overlap in frequency domain cannot be corrected aliasing

Overlap between replicated copies in frequency spectrum

• High frequency components from the replicated copies are treated like low frequencies during the reconstruction process

In Fourier space

It all comes from sampling at discrete points

- Multiplied with Shah function, no smoothly weighted filters
- Shah function: repeats frequency spectrum

Or, from using non band limited primitives

• Hard edges \Rightarrow infinitely high frequencies

In reality, integration over finite region necessary

• E.g., finite CCD pixel size

Computer: Analytic integration often not possible

• No analytic description of radiance or visible geometry available

Only way: numerical integration

- Estimate integral by taking multiple point samples, average
 - Leads to aliasing
- Computationally expensive
- Approximate

Prefiltering

Filter (*i.e.*, blur) the original function so that no high frequencies remain that can't be captured accurately at the sampling rate being used. While this technique changes the character of the function being sampled by removing information from it, blurring is generally less objectionable than aliasing.

Nonuniform Sampling

Although the image functions that we will be sampling are known to have infinite-frequency components and thus can't be perfectly reconstructed from point samples, it is possible to reduce the visual impact of aliasing by varying the spacing between samples in a nonuniform way.

Adaptive Sampling

If we can identify the regions of the signal with frequencies higher than the Nyquist limit, we can take additional samples in those regions without needing to incur the computational expense of increasing the sampling frequency everywhere. It can be difficult to get this approach to work well in practice, because finding all of the places where supersampling is needed is difficult. Most techniques for doing so are based on examining adjacent sample values and finding places where there is a significant change in value between the two; the assumption is that the signal has high frequencies in that region.

Antialiasing by Pre-Filtering

Filtering before sampling

- Band-limiting signal
- Analog / analytic or
- Reduce Nyquist frequency for chosen sampling-rate

Ideal reconstruction

• Convolution with *sinc*

Practical reconstruction

- Convolution with
 - Box filter, Bartlett (Tent)

\Rightarrow Reconstruction error

Assumption

- Energy in high frequencies decreases quickly
- Reduced aliasing by intermediate sampling with higher frequencies

Algorithm

- Super-sampling
 - Sample continuous signal with boundary frequency \mathbf{f}_1
 - Aliasing with energy beyond **f**₁ (assumed to be small)
- Reconstruction of signal
 - Filtering with $g_1(x)$: *e.g.* convolution with $sinc(f_1)$
- Analytic low-pass filtering of signal
 - Filtering with filter $g_2(x)$ with $f_2 \ll f_1$
 - Signal is now band limited w.r.t. **f**₂
- Re-sampling with a sampling frequency that is compatible with f_2
 - No additional aliasing
- Filters $g_1(x)$ and $g_2(x)$ can be combined
- Hardware support (OpenGL multisampling extension)

Regular super-sampling

- Averaging of *N* samples per pixel on a grid
- N:
 - 4 quite good
 - 16 almost always sufficient
- Samples
 - Rays, z-buffer, reflection, motion, ...
- Averaging
 - Box filter
 - Others: Pyramid (Bartlett), B-spline, Hexagonal, ...
- Regular super-sampling
 - Nyquist frequency for aliasing only shifted
 - \Rightarrow Irregular sampling patterns

Super-Sampling Caveats

Popular mistake

- Sampling at the corners of every pixel
- Pixel color by averaging
- Free super-sampling ???

Problem

- Wrong reconstruction filter!!!
- Same sampling frequency, but post-filtering with a hat function
- Blurring: Loss of information

Post-Reconstruction Blur

1x1 Sampling, 3x3 Blur

1x1 Sampling, 7x7 Blur

 \Rightarrow "Super-sampling" does not come for free

Adaptive Super-Sampling

Adaptive super-sampling

- Idea: locally adapt sampling density
 - Slowly varying signal:
 - low sampling rate
 - Strong changes:

high sampling rate

- Decide sampling density locally
- Decision criterion needed
 - Differences of pixel values
 - Contrast (relative difference)

Adaptive Super-Sampling

Algorithm

- Sampling at corners and mid points
- Recursive subdivision of each quadrant
- Decision criterion
 - Differences, contrast, object-IDs, ray trees, ...
- Filtering with weighted averaging
 - ¼ from each quadrant
 - Quadrant: ½ (midpoint + corner)
 - Recursion

 $\frac{1}{1} \left(\frac{A+E}{2} + \frac{D+E}{2} + \frac{1}{4} \left[\frac{F+G}{2} + \frac{B+G}{2} + \frac{H+G}{2} + \frac{1}{4} \left\{ \frac{J+K}{2} + \frac{G+K}{2} + \frac{L+K}{2} + \frac{E+K}{2} \right\} \right] + \frac{1}{4} \left[\frac{E+M}{2} + \frac{H+M}{2} + \frac{N+M}{2} + \frac{1}{4} \left\{ \frac{M+Q}{2} + \frac{P+Q}{2} + \frac{C+Q}{2} + \frac{R+Q}{2} \right\} \right] \right)$

Extension

• Jittering of sample points

Geometry

- Edges, vertices, sharp boundaries
- Silhouettes (view dependent)
- ...

Texture

• E.g., checkerboard pattern, other discontinuities, ...

Illumination

• Shadows, lighting effects, projections, ...

\Rightarrow Analytic filtering almost impossible

• Even with the most simple filters

Stratified Sampling

Problems with regular super-sampling

- Expensive: 4-fold to 16-fold effort
- Non-adaptive: Same effort everywhere
- Too regular: Reduced number of levels

Introduce irregular sampling pattern

 $0 \rightarrow 4/16 \rightarrow 8/16 \rightarrow 12/16 \rightarrow 16/16$

Stochastic super-sampling

• Or analytic computation of pixel coverage and pixel mask

Requirements

- Even distribution
- Little correlation between samples
- Incremental generation

Generation of samples

- Poisson-disk sampling
 - Fixes a minimum distance between samples
 - Random generation of samples
 - Rejection, if too close to other samples
- Jittered sampling
 - Random perturbation from regular positions
- Stratified Sampling
 - Subdivision into areas with one random sample each
- Quasi-random numbers (Quasi-Monte Carlo)
 - E.g. Halton Sequence
 - Advanced feature

Motivation

• Distribution of the optical receptors on the retina (here: ape)

Distribution of the receptors

Fourier analysis

HVS: Poisson Disk Experiment

Human perception

- Very sensitive to regular structures
- Insensitive against (high frequency) noise

Campbell-Robson contrast sensitivity chart

Stochastic Sampling

• Transforms energy in high frequency bands into noise

Examples

Triangle Shah (Width: 1.01 pix, Heigth: 50 pix):

- 1 sample, no jittering
- 1 sample, jittering
- 16 samples, no jittering
- 16 samples, jittering

(5)								
(0)	0	(M)	0	R	0	۸°	0	٨°
	0	10HD	O	XX/X	0	10	0	0
	0		0	UX ()	0	IX I	0	6
	0	<u>UIB</u>	0	UR O	•	[]][]	0	1KI)
	0		•	IIIX	0	IN	0	
	0		•/	(HI)	•	IM	d	1XXX

Motion Blur:

- 1 sample, no jittering
- 1 sample, jittering
- 16 samples, no jittering
- 16 samples, jittering

(c)

(d)

Image Reconstruction

Filter Functions for econstruction

- Box Filter
- Triangle Filter
- Gaussian Filter
- Mitchell Filter
- Windowed Sinc Filter

Read more

• http://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Image_Reconstruction.html

Wrap-Up

Fourier transformation

- Equivalent representation of transformed signal
- Spectral analysis: shows signal's frequency components

Convolution

• Filtering

Sampling

- Multiplication with Shah function
- Only at discrete points: no integration over signal
- Frequency spectrum replicated
- Replication distance = sampling rate

Aliasing

- Replicated spectra overlap
- Cannot be separated by filtering anymore
- Erroneous frequency amplitudes wrong function!

Wrap-up

Spatial aliasing solutions:

- Increasing the sampling rate
 - Ok, but infinite frequencies at sharp edges
- Post-filtering (after reconstruction)
 - Does not work only leads to blurred stair cases
- Pre-filtering (Blurring) of sharp geometry features
 - Slowly make geometry transparent at the edges
 - Correct solution in principal
 - Analytic low-pass filtering hard to implement
 - Super-sampling

Temporal aliasing solutions:

- Increasing the frame rate
 - OK
- Pre-filtering (Motion Blur)
 - Yes, possible for simple geometry (*e.g.*, Cartoons)
 - Problems with texture, etc.
- Post-filtering (Averaging several frames)
 - Does not work only multiple detail