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Motivation

Aliasing
• Aliasing is an error arising because the sampling and reconstruction process involves approximation

• These errors occur because the sampling process is not able to capture all of the information from the 
continuously defined image function

• Aliasing can manifest itself in many ways, including jagged edges, flickering in animations, moiré 
patterns, etc.
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Motivation

Spatial Aliasing
• Stair cases, Moiré patterns, etc.
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Motivation

Moiré pattern
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Motivation
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Optical Illusion: The wagon wheel effect (aliasing)

Temporal Aliasing

Real World: clockwise rotation

Sampling: captured data

Reconstruction: counter-clockwise
rotation



Sampling Theory
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Sampling Theory

Sampling and Reconstruction
• Taking a set of point samples of 𝑓(𝑥) (indicated by dots), we determine the value of the function at 

those positions

• These sample values can be used to reconstruct a function ሚ𝑓(𝑥) that is an approximation to 𝑓(𝑥)

• The sampling theorem, makes a precise statement about the conditions on 𝑓(𝑥), the number of 
samples taken, and the reconstruction technique used under which ሚ𝑓(𝑥) is exactly the same as 𝑓(𝑥). 

• The fact that the original function can sometimes be reconstructed exactly from point samples 
alone is remarkable.

8

Sampling Reconstruction

𝑓(𝑥) ሚ𝑓(𝑥)

https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem


Sampling Theory
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, not

Nature

Continuous signal (2D / 3D / 4D with time)
• Defined at all points

Acquisition

Sampling
• Rays, pixel / texel, spectral values, frames, etc.

Representation

Discrete data
• Discrete points, discretized values

Reconstruction

Interpolation
• Mimic continuous signal

Impression

Natural
• Hopefully similar to the original signal, no artifacts



Fourier Transformation
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The Frequency Domain and the Fourier Transform

Fourier analysis
• Characterize a signal (function) by its frequency

• The higher frequency a function is, the more quickly it varies over a given region

• Fourier transform represents a function in the frequency domain

11

Low-frequency function
High-frequency function

https://de.wikipedia.org/wiki/Fourier-Transformation


The Frequency Domain and the Fourier Transform

Fourier analysis
• Any periodic, continuous function can be represented as the sum of sine or cosine functions

𝑓 𝑥 =

𝑘

𝑎𝑘 cos
2𝜋

𝜏
𝑘𝑥 + 𝑏𝑘 sin

2𝜋

𝜏
𝑘𝑥
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Euler’s formula:

𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥

here 𝑒 is the base of the 
natural logarithm and 

𝑖 = −1 is the 
imaginary unit. Cosine is 
thus on the real axis and 
sine on the imaginary 
one.

𝑓(𝑥)

https://en.wikipedia.org/wiki/Euler%27s_formula


The Frequency Domain and the Fourier Transform

Fourier analysis
• Any periodic, continuous function can be represented as the sum of sine or cosine functions

𝑓 𝑥 =

𝑘

𝐹(𝑘)𝑒𝑖
2𝜋
𝜏
𝑘𝑥
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• Splitting a function into 
frequency components

• Works well even for non-
ideal signals

• Discrete signals (e.g.
images) are inherently 
limited in bandwidth

1 2 4

frequency domain spatial domain

1

0.5

𝑘

𝑓(𝑥)



The Frequency Domain and the Fourier Transform

Fourier analysis
• Any periodic, continuous function can be represented as the sum of sine or cosine functions

𝑓 𝑥 =

𝑘

𝑎𝑘 cos
2𝜋

𝜏
𝑘𝑥 + 𝑏𝑘 sin

2𝜋

𝜏
𝑘𝑥 =

𝑘

𝐹(𝑘)𝑒𝑖
2𝜋
𝜏
𝑘𝑥

• 𝑘: frequency band

• 𝑘 = 0 mean value

• 𝑘 = 1 function period, lowest possible frequency  

• 𝑘 = 1,5? not possible

• 𝑘𝑚𝑎𝑥? band limit, no higher frequency present in signal

• 𝑎𝑘, 𝑏𝑘: Fourier coefficients

• Odd function   𝑓 −𝑥 = −𝑓(𝑥)

• 𝑎𝑘 = 0

• 𝑓 𝑥 = σ𝑘 𝑏𝑘 sin
2𝜋

𝜏
𝑘𝑥

• Even function  𝑓 −𝑥 = 𝑓(𝑥):

• 𝑏𝑘 = 0

• 𝑓 𝑥 = σ𝑘 𝑎𝑘 cos
2𝜋

𝜏
𝑘𝑥
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The Frequency Domain and the Fourier Transform

Example:
• Square wave: a perioding odd function

𝑓 𝑥 = ቊ
0.5 ∀ 0 < 𝑥 𝑚𝑜𝑑 2𝜋 < 𝜋
−0.5 ∀ 𝜋 < 𝑥 𝑚𝑜𝑑 2𝜋 < 2𝜋

• 𝑏0 = 0

• 𝑏1 = 1

• 𝑏2 = 0

• 𝑏3 = Τ1 3

• 𝑏4 = 0

• 𝑏5 = Τ1 5

• 𝑏6 = 0

• 𝑏7 = Τ1 7

• 𝑏8 = 0

• 𝑏9 = Τ1 9

• …
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The Frequency Domain and the Fourier Transform

Example:
• Square wave: a perioding odd function

𝑓 𝑥 = ቊ
0.5 ∀ 0 < 𝑥 𝑚𝑜𝑑 2𝜋 < 𝜋
−0.5 ∀ 𝜋 < 𝑥 𝑚𝑜𝑑 2𝜋 < 2𝜋
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The Frequency Domain and the Fourier Transform

More Examples 

• Sine wave with positive offset

• Square wave

• Scanline of an image
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frequency domainspatial domain



The Frequency Domain and the Fourier Transform

Important basis functions
• Box ⟺ sinc (sinus cardinalis)

sinc 𝑥 =
sin(𝑥𝜋)

𝑥𝜋

sinc 0 = 1

 sinc 𝑥 𝑑𝑥 = 1

• Wide box ⇒ small sinc

• Negative values

• Infinite support

• Triangle ⟺ sinc2

• Gauss ⟺ Gauss

18

frequency domainspatial domain



The Frequency Domain and the Fourier Transform

Important basis functions
• Example box function transform behavior

• Fourier transform: sinc

• Wide box:  narrow sinc

• Narrow box:  wide sinc
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The Frequency Domain and the Fourier Transform

Transformation from the frequency domain to the spatial domain
• This formula is also knows as “Fourier synthesis equation” or inverse Fourier transform

𝑓 𝑥 =

𝑘

𝐹(𝑘)𝑒𝑖
2𝜋
𝜏
𝑘𝑥

Transformation from the spatial domain to the frequency domain
• The reverse operation is known as the “Fourier analysis equation” or Fourier Transform:

𝐹 𝑘 =

𝑥

𝑓(𝑥)𝑒−𝑖
2𝜋
𝜏
𝑘𝑥
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The Frequency Domain and the Fourier Transform

Transformation from the frequency domain to the spatial domain
• This formula is also knows as “Fourier synthesis equation” or inverse Fourier transform:

𝑓 𝑥 = න

−∞

∞

𝐹 𝜔 𝑒𝑖2𝜋𝜔𝑥𝑑𝜔

Transformation from the spatial domain to the frequency domain
• The reverse operation is known as the “Fourier analysis equation” or Fourier Transform:

𝐹 𝜔 = න

−∞

∞

𝑓 𝑥 𝑒−𝑖2𝜋𝜔𝑥𝑑𝑥
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Fourier Analysis of an Image

Images have discrete values and are not continuous functions
• The Fast Fourier Transform (FFT) is a divide and conquer algorithm that enables us to compute the 

discrete Fourier transform and its inverse in O(n log n) time where n is the number of samples

• Compute the 2D Fourier transform by applying 1D discrete Fourier transforms (i.e. FFTs) along each 
dimension

Compute the discrete Fourier transform (via FFT)
• Transform the discrete image values into another array of discrete values

Perform operations
• Efficient filtering in frequency domain

Compute the inverse discrete Fourier transform (via FFT)
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There is an opinion that FFT is the most influential algorithm! 
Check out: 3 Applications of the (Fast) Fourier Transform ft. 
Mikhail Kapralov (Михаил Капралов)
https://www.youtube.com/watch?v=aqa6vyGSdos

https://www.youtube.com/watch?v=aqa6vyGSdos


Fourier Analysis of an Image

Fourier Analysis
• On a simple input, e.g. grayscale image (= constant function), the output of a Fourier analysis is also 

simple
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Fourier Analysis of an Image

Fourier Analysis

• Let’s imagine that our image is created using a sinusoid function in the horizontal (𝑥) direction: sin
2𝜋

32
𝑥
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Fourier Analysis of an Image

Fourier Analysis

• How about a higher frequency: sin
2𝜋

16
𝑥
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Fourier Analysis of an Image

Fourier Analysis

• How about applying the same pattern vertically: sin
2𝜋

16
𝑦
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Fourier Analysis of an Image

Fourier Analysis

• Different sinusoidal components applied in two directions: sin
2𝜋

32
𝑥 × sin

2𝜋

16
𝑦
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Frequencies in Image
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All frequencies



Frequencies in Image
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Low frequencies

Let’s eliminate some frequencies present in these images!



Frequencies in Image
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Mid range frequencies 1



Frequencies in Image
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Mid range frequencies 2



Frequencies in Image
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High frequencies



Frequencies in Image

The sum is the image itself!
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Ideal Sampling and Reconstruction

Formal definition of sampling
• Sampling process requires us to choose a set of equally spaced sample positions and compute the 

function’s value at those positions

• Formally, this corresponds to multiplying the function by a “shah” or “impulse train” function 
(an infinite sum of equally spaced delta Dirac functions)

Ш∆𝑥 𝑥 = ∆𝑥 

𝑘=−∞

∞

𝛿(𝑥 − 𝑘∆𝑥)

34

𝑓(𝑥) Ш∆𝑥 𝑥 Ш∆𝑥 𝑥 𝑓(𝑥)

∆𝑥 ∆𝑥

Ш∆𝑥 𝑥 𝑓(𝑥) = ∆𝑥 

𝑘=−∞

∞

𝛿 𝑥 − 𝑘∆𝑥 𝑓(𝑘∆𝑥)



Ideal Sampling and Reconstruction

Formal definition of reconstruction

• The sample values are used to calculate a reconstructed function ሚ𝑓(𝑥) by choosing a reconstruction 
filter function 𝑟(𝑥) and computing the convolution

ሚ𝑓 𝑥 = Ш∆𝑥 𝑥 𝑓 𝑥 ∗ 𝑟(𝑥)

• The convolution is defined as 

𝑓 𝑥 ∗ 𝑔 𝑥 = න

−∞

∞

𝑓 𝑡 𝑔 𝑥 − 𝑡 𝑑𝑡

• For reconstruction, convolution gives a weighted sum of scaled instances of the reconstruction filter 
centered at the sample points:

ሚ𝑓(𝑥) = ∆𝑥 

𝑘=−∞

∞

𝑓 𝑘∆𝑥 𝑟(𝑥 − 𝑘∆𝑥)
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ሚ𝑓(𝑥)𝑓(𝑥) Ш∆𝑥 𝑥 𝑓(𝑥)



Ideal Sampling and Reconstruction

Convolution of two functions 𝑓(𝑡) and 𝑔 𝑡 :

𝑓 𝑥 ∗ 𝑔(𝑥) = න

−∞

∞

𝑓 𝑡 𝑔 𝑥 − 𝑡 𝑑𝑥

• Shift one function against  the other by 𝑥

• Multiply function values

• Integrate overlapping region

• Numerical convolution: Expensive operation

• For each 𝑥: integrate over non-zero domain
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Convolution Theorem

Convolution in image domain: multiplication in Fourier domain

Convolution in Fourier domain: multiplication in image domain
• Multiplication much cheaper than convolution!

37

=.



Aliasing
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Sampling
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Constant function

Dirac delta function

Shah function

Constant function

Frequency domainSpatial domain

Dirac delta function

Shah function



Sampling

Constant & Dirac-delta function 𝛿()
• Duality

𝑓 𝑥 = 𝐾

𝐹 𝜔 = 𝐾𝛿(𝜔)

• And vice versa

Shah function
• Duality: The dual of a Shah function is again a Shah function

• Inverse wave length, amplitude scales with inverse wave length

𝑓 𝑥 = 

𝑘=−∞

∞

𝛿(𝑥 − 𝑘Δ𝑥)

𝐹 𝜔 =
1

Δ𝑥


𝑘=−∞

∞

𝛿 𝜔 − 𝑘
1

Δ𝑥
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Sampling

Continuous function
• Band-limited Fourier transform

Sampled at discrete points
• Multiplication with Shah function in 

spatial domain corresponds to convolution in
Fourier domain

Frequency bands overlap? 
• No: good

• Yes: bad, aliasing
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Nyquist Frequency

Definition:
• Nyquist Frequency is the highest (spatial) frequency that can be represented

• Determined by image resolution (pixel size):

42

Spatial frequency < Nyquist Spatial frequency = Nyquist

2 samples / period

Spatial frequency > Nyquist Spatial frequency >> Nyquist



Reconstruction

Only original frequency band desired

Filtering
• In Fourier domain: multiplication with

windowing function around origin

• In spatial domain: convolution with
Fourier transform of windowing  function

Optimal filtering function
• Box function in Fourier domain

• Corresponds to 𝑠𝑖𝑛𝑐() in space domain

• Unlimited region of support

• Spatial domain only allows approximations
(limited support)
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Reconstruction Filter

Cutting off the support is not a good solution

44



Sampling and Reconstruction

Original function and  its 
band-limited  frequency 
spectrum

Correct filtering

Fourier: Box (mult.)  
Space: 𝑠𝑖𝑛𝑐 (conv.)

Only one copy
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Signal sampling:

Multiplication / 
convolution with Shah

Shah dense enough  
(sampling≥2*bandlimit)

Frequency spectrum is 
replicated

Bands do not overlap



Sampling and Reconstruction

Reconstruction  with 
ideal 𝑠𝑖𝑛𝑐

Identical signal

Reconstruction  with 
triangle function
(= piecewise linear
interpolation)
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Approximate filtering

Space: triangle (conv.)
Fourier: sinc2 (mult.)

High frequencies are  not 
ignored

⇒Aliasing



Filtering during Display

Reconstruction
• Physical output devices generate a continuous signal, even for discrete input, e.g., on a computer 

monitor

Example
• DAC (Digital-to-Analog Converter): Sample and hold

• Capacities and inductivities

• CRT: Phosphor and light spot

• Afterglow on screen

47

DAC CRT pixel size



Sampling with Low Frequency

Correct filtering

Space: 𝑠𝑖𝑛𝑐 (conv.)  

Fourier: hat (mult.)

Band overlap in  
frequency domain  
cannot be corrected -
aliasing

Original function

Sampling below Nyquist:

Shah spaced to far  
(sampling<2*bandlimit)

Frequency bands overlap

48



Sampling with Low Frequency

Reconstruction  with 
ideal 𝑠𝑖𝑛𝑐

Reconstruction fails 
(frequency components  
wrong due to aliasing!)

Fitlering with 𝑠𝑖𝑛𝑐2

function

Reconstruction  with 
triangle function
(= piecewise linear
interpolation)

Even worse  
reconstruction
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Aliasing

Overlap between replicated copies in 
frequency spectrum

• High frequency components from the  replicated copies are 
treated like low  frequencies during the reconstruction  
process
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Aliasing

In Fourier space

• Original
spectrum

• Sampling
Shah

• Resulting
spectrum

• Reconstruction
filter

• Reconstructed
spectrum

51

Nyquist satisfied
Nyquist violated

Aliasing



Aliasing

It all comes from sampling at discrete points
• Multiplied with Shah function, no smoothly weighted filters

• Shah function: repeats frequency spectrum

Or, from using non band limited primitives
• Hard edges ⇒ infinitely high frequencies

In reality, integration over finite region necessary
• E.g., finite CCD pixel size

Computer: Analytic integration often not possible
• No analytic description of radiance or visible geometry available

Only way: numerical integration
• Estimate integral by taking multiple point samples, average

• Leads to aliasing

• Computationally expensive

• Approximate
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Antialiasing Techniques

Prefiltering
Filter (i.e., blur) the original function so that no high frequencies remain that can’t be captured accurately 
at the sampling rate being used. While this technique changes the character of the function being 
sampled by removing information from it, blurring is generally less objectionable than aliasing.

Nonuniform Sampling
Although the image functions that we will be sampling are known to have infinite-frequency components 
and thus can’t be perfectly reconstructed from point samples, it is possible to reduce the visual impact of 
aliasing by varying the spacing between samples in a nonuniform way.

Adaptive Sampling
If we can identify the regions of the signal with frequencies higher than the Nyquist limit, we can take 
additional samples in those regions without needing to incur the computational expense of increasing the 
sampling frequency everywhere. It can be difficult to get this approach to work well in practice, because 
finding all of the places where supersampling is needed is difficult. Most techniques for doing so are 
based on examining adjacent sample values and finding places where there is a significant change in 
value between the two; the assumption is that the signal has high frequencies in that region.
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Antialiasing by Pre-Filtering

Filtering before sampling
• Band-limiting signal

• Analog / analytic or

• Reduce Nyquist frequency
for chosen sampling-rate

Ideal reconstruction
• Convolution with 𝑠𝑖𝑛𝑐

Practical reconstruction
• Convolution with

• Box filter, Bartlett (Tent)

⇒ Reconstruction error
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Re-Sampling Pipeline

Assumption
• Energy in high frequencies decreases quickly

• Reduced aliasing by intermediate sampling with higher frequencies

Algorithm
• Super-sampling

• Sample continuous signal with boundary frequency f1

• Aliasing with energy beyond f1 (assumed to be small)

• Reconstruction of signal

• Filtering with 𝑔1(𝑥): e.g. convolution with 𝑠𝑖𝑛𝑐(f1)

• Analytic low-pass filtering of signal

• Filtering with filter 𝑔2(𝑥) with f2 << f1

• Signal is now band limited w.r.t. f2

• Re-sampling with a sampling frequency that is compatible with f2

• No additional aliasing

• Filters 𝑔1(𝑥) and 𝑔2(𝑥) can be combined

• Hardware support (OpenGL multisampling extension)

55

f2 f1



Super-Sampling in Practice

Regular super-sampling
• Averaging of 𝑁 samples per pixel on a grid

• 𝑁 :

• 4 quite good

• 16 almost always sufficient

• Samples

• Rays, z-buffer, reflection, motion, ...

• Averaging

• Box filter

• Others: Pyramid (Bartlett), B-spline, Hexagonal, ...

• Regular super-sampling

• Nyquist frequency for aliasing only shifted

• ⇒ Irregular sampling patterns
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Super-Sampling Caveats

Popular mistake
• Sampling at the corners of every pixel

• Pixel color by averaging

• Free super-sampling ???

Problem
• Wrong reconstruction filter!!!

• Same sampling frequency, but post-filtering with a hat function

• Blurring: Loss of information

Post-Reconstruction Blur

57

1x1 Sampling, 3x3 Blur 1x1 Sampling, 7x7 Blur

⇒ „Super-sampling“ does not come for free



Adaptive Super-Sampling

Adaptive super-sampling
• Idea: locally adapt sampling  density

• Slowly varying signal:

low sampling rate

• Strong changes:

high sampling rate

• Decide sampling density locally

• Decision criterion needed

• Differences of pixel values

• Contrast (relative difference)

• ൗ𝐴−𝐵
𝐴 + 𝐵
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Adaptive Super-Sampling

Algorithm
• Sampling at corners and mid points

• Recursive subdivision of each quadrant

• Decision criterion

• Differences, contrast, object-IDs, ray trees, ...

• Filtering with weighted averaging

• ¼ from each quadrant

• Quadrant: ½ (midpoint + corner)

• Recursion

Extension
• Jittering of sample points
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Sources of Aliasing in Rendering

Geometry
• Edges, vertices, sharp boundaries

• Silhouettes (view dependent)

• ...

Texture
• E.g., checkerboard pattern, other discontinuities, …

Illumination
• Shadows, lighting effects, projections, …

⇒ Analytic filtering almost impossible
• Even with the most simple filters
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Stratified Sampling
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Super-Sampling in Practice

Problems with regular super-sampling
• Expensive: 4-fold to 16-fold effort 

• Non-adaptive: Same effort everywhere 

• Too regular: Reduced number of levels

Introduce irregular sampling pattern

Stochastic super-sampling
• Or analytic computation of pixel coverage and pixel mask
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0 → 4/16 → 8/16 → 12/16 → 16/16 Better, but noisy



Stochastic Sampling

Requirements
• Even distribution

• Little correlation between samples

• Incremental generation

Generation of samples
• Poisson-disk sampling

• Fixes a minimum distance between samples

• Random generation of samples

• Rejection, if too close to other samples

• Jittered sampling

• Random perturbation from regular positions

• Stratified Sampling

• Subdivision into areas with one random sample each

• Quasi-random numbers (Quasi-Monte Carlo)

• E.g. Halton Sequence

• Advanced feature
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Poisson-Disk Sample Distribution

Motivation
• Distribution of the optical receptors on the retina (here: ape)
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Distribution of the receptors Fourier analysis

© Andrew Glassner, Intro to Raytracing



HVS: Poisson Disk Experiment

Human perception
• Very sensitive to regular structures

• Insensitive against (high frequency) noise

65

Campbell-Robson contrast sensitivity chart



Stochastic Sampling

Stochastic Sampling
• Transforms energy in high frequency bands into noise
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Gauss Jittering  

White-Noise Jittering



Examples

Triangle Shah
(Width: 1.01 pix, Heigth: 50 pix):  

• 1 sample, no jittering

• 1 sample, jittering

• 16 samples, no jittering

• 16 samples, jittering

Motion Blur:
• 1 sample, no jittering  

• 1 sample, jittering

• 16 samples, no jittering

• 16 samples, jittering
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Comparison

Regular, 1x1

Regular 3x3

Regular, 7x7

Jittered, 3x3

Jittered, 7x7
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Image Reconstruction
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Filter Functions

Filter Functions for econstruction
• Box Filter

• Triangle Filter

• Gaussian Filter

• Mitchell Filter

• Windowed Sinc Filter

Read more 
• http://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Image_Reconstruction.html
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http://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Image_Reconstruction.html


Wrap-Up

Fourier transformation
• Equivalent representation of transformed signal

• Spectral analysis: shows signal’s frequency components

Convolution
• Filtering

Sampling
• Multiplication with Shah function

• Only at discrete points: no integration over signal

• Frequency spectrum replicated

• Replication distance = sampling rate

Aliasing
• Replicated spectra overlap

• Cannot be separated by filtering anymore

• Erroneous frequency amplitudes – wrong function!
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Wrap-up

Spatial aliasing solutions:
• Increasing the sampling rate

• Ok, but infinite frequencies at sharp 
edges

• Post-filtering (after reconstruction)

• Does not work - only leads to blurred 
stair cases

• Pre-filtering (Blurring) of sharp geometry 
features

• Slowly make geometry transparent at 
the edges

• Correct solution in principal

• Analytic low-pass filtering hard to 
implement

• Super-sampling
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Temporal aliasing solutions:
• Increasing the frame rate

• OK

• Pre-filtering (Motion Blur)

• Yes, possible for simple geometry 
(e.g., Cartoons)

• Problems with texture, etc.

• Post-filtering (Averaging several frames)

• Does not work – only multiple detail


