
Computer Graphics
Sergey Kosov

Lecture 13:

Animation

Contents

1. History of Animation

2. Key Frames and Key Points

3. Parametric Curves

4. Lagrange Interpolation

5. Hermite Splines

6. Bezier Splines

7. DeCasteljau Algorithm

8. Parameterization

9. B-Splines

© 2020 Sergey Kosov
1

History of Animation

Before Animation

2

Shahr-e Sukhteh, Iran 3200 BCE

History of Animation

Before Animation

3

Tomb of Khnumhotep, Egypt 2400 BCE

History of Animation

The Phenakistoscope
• First systematic truly moving animation - the phenakistoscope (to be viewed in the mirror through the

slit in the spinning disc)

4

PHENAKISTOSCOPE - Tribute to Joseph Plateau - - YouTube

https://www.youtube.com/watch?v=UqwkdlwmHig

History of Animation

First Film
• Used for research purposes

in order to answer the question: do horses life all four limbs off the ground in gallop?

5

Sallie Gardner at a Gallop (1878) - YouTube

https://www.youtube.com/watch?v=JaumV0FgwBg

How Does it Work?

Computer animation is a sequence of still images rapidly changing at a fixed rate

The mechanism:

• Retinal persistence (our light receptors hold the perceived state over a couple of milliseconds)
scientifically disproved

• Beta phenomenon: visual memory in brain - not eyeball

• Phi phenomenon: brain anticipates, giving sense of motion (it’s Gestalt psychology again!)

6

Animation basics: The optical illusion
of motion - TED-Ed - YouTube

Phi Phenomenon - YouTube

https://www.youtube.com/watch?v=V8A4qudmsX0
https://www.youtube.com/watch?v=L2-swEdDXsc

How Does it Work?

Motion
• Motion is a pre-attentive phenomenon

• → It has a stronger power to render things distinguishable for us than color, shape, ...

• Back to Human Visual System: our eyes are more sensitive to motion at periphery

• That’s why we are prone to see “ghosts” in the corner of our visual field

• Motion triggers the orienting response / reflex (an organism's immediate response to a change in its
environment, when that change is not sudden enough to elicit the startle reflex)

• Motion parallax provide 3-D cue (like stereopsis) – it means that we can understand depth in moving
scenes despite not having the stereo-visual observation

7

Animation Technology

“The Disney workflow”
• Senior artist draws keyframes

• Assistant draws in-betweens (tedious and labor intensive process)

In modern animation software the workflow is similar
• You, as an artist decide on the key moments of the movement, and the software interpolates the

geometry in the timesteps in between

8

Keyframing

Basic idea:
• Specify important events only

• Fills in the rest via interpolation / approximation

Key frames / Events:
• Position

• Color

• Light intensity

• Camera zoom

• etc.

9

What Can be Animated?

Camera
• Position

• Direction

• Focal length

10

Light Source
• Position

• Direction

• Radiant Power

Geometry
• Position

• Affine Transform

• Rotation

• Motion

• Scaling

• Shearing

Shading
• Transparency

• Textures

• Diffuse properties

• etc.

Example
• Position is one of the most common characteristics, which is provided via Vec3f values

• If the sequence contains 240 frames, for object A we can assign e.g. frames 0, 100 and 240 as
keyframes and for object B - frames 10, 20 and 200

• Next we need to provide 3 positions for object A and 3 positions for object B for every keyframe, e.g.

• A.pos1 = Vec3f(7, 0, 1);
A.pos2 = Vec3f(10, 0, 10);

• For the frames lying in-between 0 and 100, interpolate the position of object A using A.pos1 and
A.pos2

• By analogy proceed with object B and all other frames

Interpolation via Polynomial Curves

Curve descriptions
• Explicit:

• 𝑦 = 𝑓 𝑥

• 𝑦 𝑥 = ± 𝑟2 − 𝑥2 restricted domain

• Implicit:

• 𝐹 𝑥, 𝑦 = 0

• 𝑥2 + 𝑦2 − 𝑟2 = 0 unknown solution set

• Parametric:

• x = 𝑓𝑥 𝑡 , 𝑦 = 𝑓𝑦 𝑡

•
𝑥 𝑡 = 𝑟 cos 2𝜋𝑡
𝑦 𝑡 = 𝑟 sin 2𝜋𝑡

, 𝑡 ∈ 0, 1 flexibility and ease of use

Polynomials
• 𝑥 𝑡 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3 + ⋯

• Avoids complicated functions (e.g. 𝑝𝑜𝑤(), exp(), sin(), 𝑠𝑞𝑟𝑡())

• Use simple polynomials of low degree

11

Interpolation via Polynomial Curves

Monomial basis
• Simple basis: 1, 𝑡, 𝑡2, … (𝑡 usually in [0, 1])

Polynomial representation

𝑥 𝑡 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3 + ⋯

𝑦 𝑡 = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + 𝑏3𝑡3 + ⋯

𝑧 𝑡 = 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + 𝑐3𝑡3 + ⋯

𝑃 𝑡 =
𝑥 𝑡
𝑦(𝑡)
𝑧(𝑡)

= ෍

𝑖=0

𝑛 𝑎𝑖

𝑏𝑖

𝑐𝑖

𝑡𝑖

• Coefficients can be determined from a sufficient number of constraints (e.g. interpolation of given
points)

• Given (𝑛 + 1) parameter values 𝑡𝑖 and points 𝑃𝑖

• Solution of a linear system in the 𝐴𝑖 - possible, but inconvenient

Matrix representation

𝑃(𝑡)⊺ = 𝑡𝑛 𝑡𝑛−1 ⋯ 𝑡 1

𝑎𝑛 𝑏𝑛 𝑐𝑛

𝑎𝑛−1 𝑏𝑛−1 𝑐𝑛−1

⋮
𝑎0

⋮
𝑏0

⋮
𝑐0

12

Degree

Coefficients 𝑝𝑖 ∈ ℝ3

Monomials

Derivatives of a Polynomial Curve

Derivative
• Polynomial of degree (𝑛 − 1)

𝑑𝑃(𝑡)

𝑑𝑡
= 𝑃′ 𝑡 = 𝑛𝑡𝑛−1 (𝑛 − 1)𝑡𝑛−2 ⋯ 1 0

𝑎𝑛 𝑏𝑛 𝑐𝑛

𝑎𝑛−1 𝑏𝑛−1 𝑐𝑛−1

⋮
𝑎0

⋮
𝑏0

⋮
𝑐0

• Derivative at a point is equal to the tangent vector at that point

Example
𝑃(𝑡) = cos 2𝜋𝑡 sin 2𝜋𝑡

𝑟 0
0 𝑟

𝑃′(𝑡) = −2𝜋 ∙ sin 2𝜋𝑡 2𝜋 ∙ cos 2𝜋𝑡
𝑟 0
0 𝑟

𝑥′ 𝑡 = −2𝜋𝑟 ∙ sin 2𝜋𝑡
𝑦′ 𝑡 = 2𝜋𝑟 ∙ cos 2𝜋𝑡

𝑑𝑦

𝑑𝑥
=

𝑦′(𝑡)

𝑥′(𝑡)
=

2𝜋𝑟 ∙ cos 2𝜋𝑡

−2𝜋𝑟 ∙ sin 2𝜋𝑡
= − ctg 2𝜋𝑡

13

Derivatives

Continuity and smoothness between parametric curves
• There are two criteria for continuity:

• Geometric continuity 𝐺0

• Parametric continuity𝐶0

• If curve 𝑃1ends in the same point where curve 𝑃2 starts, it is said that we have both 𝐺0 and
𝐶0continuity

14

𝑃1(𝑡)

Not continuous
𝑃1(1) ≠ 𝑃2(𝑡)

Continuous
𝑃1 1 = 𝑃2(0)

𝑃2(𝑡)

𝑃1(𝑡)

𝑃2(𝑡)

Derivatives

Continuity and smoothness between parametric curves
• If the tangent vectors at the joint are equally directed 𝑃′1 1 = 𝑘𝑃′2(0)

• It is said that we have geometric continuity 𝐺1

• If the tangent vectors at the joint are equal 𝑃′1 1 = 𝑃′2(0)

• It is said that we have parametric continuity 𝐶1

• Similar for higher derivatives

15

𝐺1 -continuous

𝐺0 + tangent vectors parallel
𝑃′1 1 = 𝑘𝑃′2(0)

𝐶1-continuous

𝐶0 + tangent vectors parallel
𝑃′1 1 = 𝑃′2(0)

𝑃′
1(1)

𝑃′
2(0)

𝑃′
1(1)

𝑃′
2(0)

𝑃1(𝑡)

𝑃2(𝑡)

𝑃1(𝑡)

𝑃2(𝑡)

Lagrange Interpolation

Given a set of key-points:
• 𝑡𝑖 , Ԧ𝑝𝑖 , 𝑡𝑖 ∈ ℝ, Ԧ𝑝𝑖 ∈ ℝ𝑑

Find a polynomial 𝑃 such that:
• ∀𝑖 𝑃 𝑡𝑖 = Ԧ𝑝𝑖

16

𝑡1, Ԧ𝑝1

𝑡0, Ԧ𝑝0

𝑡2, Ԧ𝑝2

Lagrange Interpolation

Given a set of points:
• 𝑡𝑖 , Ԧ𝑝𝑖 , 𝑡𝑖 ∈ ℝ, Ԧ𝑝𝑖 ∈ ℝ𝑑

Find a polynomial 𝑃 such that:
• ∀𝑖 𝑃 𝑡𝑖 = Ԧ𝑝𝑖

For each point associate a
Lagrange basis polynomial:

𝐿𝑖
𝑛 𝑡 = ෑ

𝑗=0
𝑖≠𝑗

𝑛
𝑡 − 𝑡𝑗

𝑡𝑖 − 𝑡𝑗

where

𝐿𝑖
𝑛 𝑡𝑗 = 𝛿𝑖𝑗 = ቊ

1 𝑖 = 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

17

2𝑝2𝐿𝑛 𝑡

𝑡1, Ԧ𝑝1

𝑡0, Ԧ𝑝0

𝑡2, Ԧ𝑝2

Given a set of points:
• 𝑡𝑖 , Ԧ𝑝𝑖 , 𝑡𝑖 ∈ ℝ, Ԧ𝑝𝑖 ∈ ℝ𝑑

Find a polynomial 𝑃 such that:
• ∀𝑖 𝑃 𝑡𝑖 = Ԧ𝑝𝑖

For each point associate a
Lagrange basis polynomial:

𝐿𝑖
𝑛 𝑡 = ෑ

𝑗=0
𝑖≠𝑗

𝑛
𝑡 − 𝑡𝑗

𝑡𝑖 − 𝑡𝑗

where

𝐿𝑖
𝑛 𝑡𝑗 = 𝛿𝑖𝑗 = ቊ

1 𝑖 = 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Add the Lagrange basiswith points as weights:

𝑃 𝑡 = ෍

𝑖=0

𝑛

𝐿𝑖
𝑛 𝑡 Ԧ𝑝𝑖 𝑃(𝑡)⊺ = 𝐿0

𝑛 𝐿1
𝑛 ⋯ 𝐿𝑛−1

𝑛

𝑝0,𝑥 𝑝0,𝑦 𝑝0,𝑧

𝑝1,𝑥 𝑝1,𝑦 𝑝1,𝑧

⋮
𝑝𝑛−1,𝑥

⋮
𝑝𝑛−1,𝑦

⋮
𝑝𝑛−1,𝑧

Lagrange Interpolation

18

𝑡1, Ԧ𝑝1

𝑡0, Ԧ𝑝0

𝑡2, Ԧ𝑝2

Lagrange Interpolation

For each point associate a Lagrange basis polynomial:

𝐿𝑖
𝑛 𝑡 = ෑ

𝑗=0
𝑖≠𝑗

𝑛
𝑡 − 𝑡𝑗

𝑡𝑖 − 𝑡𝑗

Simple Linear Interpolation
• 𝑇 = 𝑡0, 𝑡1

𝐿0
1 𝑡 =

𝑡 − 𝑡1

𝑡0 − 𝑡1

𝐿1
1 𝑡 =

𝑡 − 𝑡0

𝑡1 − 𝑡0

Simple Quadratic Interpolation
• 𝑇 = 𝑡0, 𝑡1, 𝑡2

𝐿0
2 𝑡 =

𝑡 − 𝑡1

𝑡0 − 𝑡1

𝑡 − 𝑡2

𝑡0 − 𝑡2

𝐿1
2 𝑡 =

𝑡 − 𝑡0

𝑡1 − 𝑡0

𝑡 − 𝑡2

𝑡1 − 𝑡2

𝐿2
2 𝑡 =

𝑡 − 𝑡0

𝑡2 − 𝑡0

𝑡 − 𝑡1

𝑡2 − 𝑡1

𝑡0

1 𝐿0
1 𝑡

19

𝐿1
1 𝑡

𝑡1

1

-1

𝑡0 𝑡1 𝑡2

𝐿0
2 𝑡

𝐿1
2 𝑡

𝐿1
2 𝑡

Problems

Problems with a single polynomial
• Degree depends on the number of interpolation constraints

• Strong overshooting for high degree (𝑛 > 7)

• Problems with smooth joints

• Numerically unstable

• No local changes

20

Splines

Functions for interpolation & approximation
• Standard curve and surface primitives in geometric modeling

• Key frame and in-betweens in animations

• Filtering and reconstruction of images

Historically
• Name for a tool in ship building

• Flexible metal strip that tries to stay straight

• Within computer graphics:

• Piecewise polynomial function

21

𝑃 𝑡 𝑄 𝑡 𝑅 𝑡 𝑆 𝑡

Linear Interpolation

Linear splines
• Defined by two points: Ԧ𝑝1, Ԧ𝑝2

• Searching for 𝑃(𝑡) such that:

• 𝑃 0 = Ԧ𝑝1

• 𝑃 1 = Ԧ𝑝2

• Degree of 𝑃 is 1

• Basis:

• 𝑇1 𝑡 = 1 − 𝑡

• 𝑇2 𝑡 = 𝑡

𝑃 𝑡 = Ԧ𝑝1𝑇1 𝑡 + Ԧ𝑝2𝑇2 𝑡 𝑃(𝑡)⊺ = 1 − 𝑡 𝑡
Ԧ𝑝1

⊺

Ԧ𝑝2
⊺

22

Linear basis

1 𝑡

1 𝑇1 𝑇2

Linear Interpolation

1 − 𝑡 𝑡

Linear basis

𝑡 1

monomial basis 𝑀

0 1
1 1

−1 1
1 0

23

𝑃(𝑡)⊺ = 𝑀 ⋅
−1 1
1 0

⋅
Ԧ𝑝1

⊺

Ԧ𝑝2
⊺

Linear Interpolation

𝐶0-continuous

24

𝑃(𝑡)⊺ = 𝑀 ⋅
−1 1
1 0

⋅
Ԧ𝑝1

⊺

Ԧ𝑝2
⊺

Hermite Interpolation

Cubic splines
• Defined by two points: Ԧ𝑝1, Ԧ𝑝2 and two tangents: Ԧ𝜏1, Ԧ𝜏2

• Searching for 𝑃(𝑡) such that:

• 𝑃 0 = Ԧ𝑝1

• 𝑃′ 0 = Ԧ𝜏1

• 𝑃′ 1 = Ԧ𝜏2

• 𝑃 1 = Ԧ𝑝2

• Degree of 𝑃 is 3

• Basis:

• 𝐻0
3 𝑡 =?

• 𝐻1
3 𝑡 =?

• 𝐻2
3 𝑡 =?

• 𝐻3
3 𝑡 =?

𝑃 𝑡 = 𝑃(0)𝐻0
3 𝑡 + 𝑃′ 0 𝐻1

3 𝑡 + 𝑃′ 1 𝐻2
3 𝑡 + 𝑃(1)𝐻3

3 𝑡

25

0 1 𝑡

Hermite Interpolation

0𝐻
3 𝑡 1𝐻

3 𝑡 2𝐻
3 𝑡 3𝐻

3 𝑡𝑡3 𝑡2 𝑡 1

𝐻

𝐻−1

26

Cubic splines
• Defined by two points: Ԧ𝑝1, Ԧ𝑝2 and two tangents: Ԧ𝜏1, Ԧ𝜏2

• Searching for 𝑃(𝑡) such that:

• 𝑃 0 = Ԧ𝑝1

• 𝑃′ 0 = Ԧ𝜏1

• 𝑃′ 1 = Ԧ𝜏2

• 𝑃 1 = Ԧ𝑝2

• Degree of 𝑃 is 3

• Basis:

• 𝐻0
3 𝑡 =?

• 𝐻1
3 𝑡 =?

• 𝐻2
3 𝑡 =?

• 𝐻3
3 𝑡 =?

𝑃(𝑡)⊺ = 𝑀 ⋅ 𝐻 ⋅

Ԧ𝑝1
⊺

Ԧ𝜏1
⊺

Ԧ𝜏2
⊺

Ԧ𝑝2
⊺

= 𝑀 ⋅ 𝐻 ⋅ 𝐺

Hermite Interpolation

27

Cubic splines
• Defined by two points: Ԧ𝑝1, Ԧ𝑝2 and two tangents: Ԧ𝜏1, Ԧ𝜏2

• Searching for 𝑃(𝑡) such that:

• 𝑃 0 = Ԧ𝑝1

• 𝑃′ 0 = Ԧ𝜏1

• 𝑃′ 1 = Ԧ𝜏2

• 𝑃 1 = Ԧ𝑝2

• Degree of 𝑃 is 3

• Basis:

• 𝐻0
3 𝑡 =?

• 𝐻1
3 𝑡 =?

• 𝐻2
3 𝑡 =?

• 𝐻3
3 𝑡 =?

• 𝑃(𝑡)⊺ = 𝑡3 𝑡2 𝑡 1 ⋅ 𝐻 ⋅ 𝐺

• 𝑃′(𝑡)⊺ = 3𝑡2 2𝑡 1 0 ⋅ 𝐻 ⋅ 𝐺

• Ԧ𝑝1
⊺ = 𝑃(0)⊺ = 0 0 0 1 ⋅ 𝐻 ⋅ 𝐺

• Ԧ𝜏1
⊺ = 𝑃′(0)⊺ = 0 0 1 0 ⋅ 𝐻 ⋅ 𝐺

• Ԧ𝜏2
⊺ = 𝑃′(1)⊺ = 3 2 1 0 ⋅ 𝐻 ⋅ 𝐺

• Ԧ𝑝2
⊺ = 𝑃(1)⊺ = 1 1 1 1 ⋅ 𝐻 ⋅ 𝐺

Ԧ𝑝1
⊺

Ԧ𝜏1
⊺

Ԧ𝜏2
⊺

Ԧ𝑝2
⊺

=

0 0
0 0
3
1

2
1

0 1
1 0
1
1

0
1

⋅ 𝐻 ⋅

Ԧ𝑝1
⊺

Ԧ𝜏1
⊺

Ԧ𝜏2
⊺

Ԧ𝑝2
⊺

Hermite Interpolation

28

Cubic splines
• Defined by two points: Ԧ𝑝1, Ԧ𝑝2 and two tangents: Ԧ𝜏1, Ԧ𝜏2

• Searching for 𝑃(𝑡) such that:

• 𝑃 0 = Ԧ𝑝1

• 𝑃′ 0 = Ԧ𝜏1

• 𝑃′ 1 = Ԧ𝜏2

• 𝑃 1 = Ԧ𝑝2

• Degree of 𝑃 is 3

• Basis:

• 𝐻0
3 𝑡 =?

• 𝐻1
3 𝑡 =?

• 𝐻2
3 𝑡 =?

• 𝐻3
3 𝑡 =?

𝐻 =

0 0
0 0
3
1

2
1

0 1
1 0
1
1

0
1

−1

=

2 1
−3 −2
0
1

1
0

1 −2
−1 3
0
0

0
0

0𝐻
3

3𝐻
3

2𝐻
3

𝐻1
3

Hermite Interpolation

29

Cubic splines
• Defined by two points: Ԧ𝑝1, Ԧ𝑝2 and two tangents: Ԧ𝜏1, Ԧ𝜏2

• Searching for 𝑃(𝑡) such that:

• 𝑃 0 = Ԧ𝑝1

• 𝑃′ 0 = Ԧ𝜏1

• 𝑃′ 1 = Ԧ𝜏2

• 𝑃 1 = Ԧ𝑝2

• Degree of 𝑃 is 3

• Basis:

• 𝐻0
3 𝑡 = 1 − 𝑡 2 1 + 2𝑡

• 𝐻1
3 𝑡 = 𝑡 1 − 𝑡 2

• 𝐻2
3 𝑡 = 𝑡2 𝑡 − 1

• 𝐻3
3 𝑡 = 3 − 2𝑡 𝑡2

𝐻 =

2 1
−3 −2
0
1

1
0

1 −2
−1 3
0
0

0
0

𝐻0
3(𝑡) 𝐻1

3(𝑡) 𝐻2
3(𝑡) 𝐻3

3(𝑡)

0𝐻
3

3𝐻
3

2𝐻
3

𝐻1
3

Hermite Interpolation

30

Cubic splines
• Basis:

• 𝐻0
3 𝑡 = 1 − 𝑡 2 1 + 2𝑡

• 𝐻1
3 𝑡 = 𝑡 1 − 𝑡 2

• 𝐻2
3 𝑡 = 𝑡2 𝑡 − 1

• 𝐻3
3 𝑡 = 3 − 2𝑡 𝑡2

Properties of Hermite Basis Functions
• 𝐻0

3 (𝐻3
3) interpolates smoothly from 1 to 0

• 𝐻0
3 and 𝐻3

3 have zero derivative at 𝑡 = 0 and 𝑡 = 1

• No contribution to derivative (𝐻1
3, 𝐻2

3)

• 𝐻1
3and 𝐻2

3are zero at 𝑡 = 0 and 𝑡 = 1

• No contribution to position (𝐻0
3, 𝐻3

3)

• 𝐻1
3 (𝐻2

3) has slope 1 at 𝑡 = 0 (𝑡 = 1)

• Unit factor for specified derivative vector

𝐻 =

2 1
−3 −2
0
1

1
0

1 −2
−1 3
0
0

0
0

𝐻0
3(𝑡) 𝐻1

3(𝑡) 𝐻2
3(𝑡) 𝐻3

3(𝑡)

Examples: Hermite Interpolation

31

Bézier

32

Bézier splines
• Defined by 4 points:

• 𝑏0, 𝑏3: start and end points

• 𝑏1, 𝑏2: control points that are approximated

• Searching for 𝑃(𝑡) such that:

• 𝑃 0 = 𝑏0

• 𝑃′ 0 = 3(𝑏1 − 𝑏0)

• 𝑃′ 1 = 3(𝑏3 − 𝑏2)

• 𝑃 1 = 𝑏3

• Degree of 𝑃 is 3

Bézier

33

Bézier splines
• Defined by 4 points:

• 𝑏0, 𝑏3: start and end points

• 𝑏1, 𝑏2: control points that are approximated

• Searching for 𝑃(𝑡) such that:

• 𝑃 0 = 𝑏0

• 𝑃′ 0 = 3(𝑏1 − 𝑏0)

• 𝑃′ 1 = 3(𝑏3 − 𝑏2)

• 𝑃 1 = 𝑏3

• Degree of 𝑃 is 3
𝑝1

⊺

𝑡1
⊺

𝑡2
⊺

𝑝2
⊺

=

1 0
−3 3
0
0

0
0

0 0
0 0

−3
0

3
1

𝑏0
⊺

𝑏1
⊺

𝑏2
⊺

𝑏3
⊺

𝑃(𝑡)⊺ = 𝑀 ⋅ 𝐻 ⋅ 𝑇𝐵𝐻 ⋅ 𝐺

Bézier splines
• Defined by 4 points:

• 𝑏0, 𝑏3: start and end points

• 𝑏1, 𝑏2: control points that are approximated

• Searching for 𝑃(𝑡) such that:

• 𝑃 0 = 𝑏0

• 𝑃′ 0 = 3(𝑏1 − 𝑏0)

• 𝑃′ 1 = 3(𝑏3 − 𝑏2)

• 𝑃 1 = 𝑏3

• Degree of 𝑃 is 3

• Basis:

• 𝐵0
3 𝑡 = 1 − 𝑡 3

• 𝐵1
3 𝑡 = 3𝑡 1 − 𝑡 2

• 𝐵2
3 𝑡 = 3𝑡2 1 − 𝑡

• 𝐵3
3 𝑡 = 𝑡3

• Bernstein polynomial:

• 𝐵𝑖
𝑛 𝑡 =

𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖 𝑃 𝑡 = 𝑏0𝐵0
3 𝑡 + 𝑏1𝐵1

3 𝑡 + 𝑏2𝐵2
3 𝑡 + 𝑏3𝐵3

3 𝑡

Bézier

𝐵 = 𝐻 ⋅ 𝑇𝐵𝐻 =

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

34

𝐵0
3 𝑡 𝐵3

3 𝑡

𝐵1
3 𝑡 𝐵2

3 𝑡

Bézier Properties

Advantages:
• End point interpolation

• Tangents explicitly specified

• Smooth joints are simple

• 𝑃3, 𝑃4, 𝑃5 collinear → G1 continuous

• 𝑃5 − 𝑃4 = 𝑃4 − 𝑃3 → C1 continuous

• Geometric meaning of control points

• Affine invariance

• Convex hull property

• For 0 < 𝑡 < 1: 𝐵𝑖 𝑡 ≥ 0

• Symmetry: 𝐵𝑖 𝑡 = 𝐵𝑛−𝑖 1 − 𝑡

Disadvantages
• Smooth joints need to be maintained explicitly

• Automatic in B-Splines (and NURBS)

35

DeCasteljau Algorithm

Direct evaluation of the basis functions 𝑃 𝑡 = σ𝑖 𝑏𝑖𝐵𝑖
𝑛 𝑡

• Simple but expensive

Use recursion
• Recursive definition of the basis functions

𝐵𝑖
𝑛 𝑡 =

𝑛
𝑖

𝑡𝑖 1 − 𝑡 𝑛−𝑖 = 𝑡𝐵𝑖−1
𝑛−1 𝑡 + (1 − 𝑡)𝐵𝑖

𝑛−1 𝑡

• Inserting this once yields:

𝑃 𝑡 = ෍

𝑖=0

𝑛

𝑏𝑖
0𝐵𝑖

𝑛(𝑡) = ෍

𝑖=0

𝑛−1

𝑏𝑖
1𝐵𝑖

𝑛−1(𝑡)

• With the new Bézier points given by the recursion

𝑏𝑖
0 𝑡 = 𝑏𝑖

𝑏𝑖
𝑘 𝑡 = 𝑡𝑏𝑖+1

𝑘−1 𝑡 + (1 − 𝑡)𝑏𝑖
𝑘−1 𝑡

36

DeCasteljau Algorithm

DeCasteljau Algorithm:
• Recursive degree reduction of the Bezier curve by using the recursion formula for the Bernstein

polynomials

𝑃 𝑡 = ෍

𝑖=0

𝑛

𝑏𝑖
0𝐵𝑖

𝑛(𝑡) = ෍

𝑖=0

𝑛−1

𝑏𝑖
1𝐵𝑖

𝑛−1(𝑡) = ⋯ = 𝑏𝑖
𝑛(𝑡) ∙ 1

𝑏𝑖
𝑘 𝑡 = 𝑡𝑏𝑖+1

𝑘−1 𝑡 + (1 − 𝑡)𝑏𝑖
𝑘−1 𝑡

Example:
• 𝑡 = 0.5

37

DeCasteljau Algorithm

Subdivision using the deCasteljau Algorithm
• Take boundaries of the deCasteljau triangle as new control points for left / right portion of the curve

Extrapolation
• Backwards subdivision

• Reconstruct triangle from one side

38

Catmull-Rom-Splines

Goal
• Smooth (C1)-joints between (cubic) spline segments

Algorithm
• Tangents given by neighboring points Pi-1 Pi+1

• Construct (cubic) Hermite segments

Advantage
• Arbitrary number of control points

• Interpolation without overshooting

• Local control

39

Catmull-Rom-Splines

40

Catmull-Rom splines
• Defined by 4 points:

• 𝑐1, 𝑐2: start and end points

• 𝑐0, 𝑐3: neighbor segment points

• Searching for 𝑃(𝑡) such that:

• 𝑃 0 = 𝑐1

• 𝑃′ 0 =
1

2
(𝑐2 − 𝑐0)

• 𝑃′ 1 =
1

2
(𝑐3 − 𝑐1)

• 𝑃 1 = 𝑐2

• Degree of 𝑃 is 3

Catmull-Rom-Splines

41

Catmull-Rom splines
• Defined by 4 points:

• 𝑐1, 𝑐2: start and end points

• 𝑐0, 𝑐3: neighbor segment points

• Searching for 𝑃(𝑡) such that:

• 𝑃 0 = 𝑐1

• 𝑃′ 0 =
1

2
(𝑐2 − 𝑐0)

• 𝑃′ 1 =
1

2
(𝑐3 − 𝑐1)

• 𝑃 1 = 𝑐2

• Degree of 𝑃 is 3

𝑝1
⊺

𝑡1
⊺

𝑡2
⊺

𝑝2
⊺

=

0 1
−0.5 0

0
0

−0.5
0

0 0
0.5 0
0
1

0.5
0

𝑐0
⊺

𝑐1
⊺

𝑐2
⊺

𝑐3
⊺

𝑃(𝑡)⊺ = 𝑀 ⋅ 𝐻 ⋅ 𝑇𝐶𝐻 ⋅ 𝐺

Catmull-Rom-Splines

42

Catmull-Rom splines
• Defined by 4 points:

• 𝑐1, 𝑐2: start and end points

• 𝑐0, 𝑐3: neighbor segment points

• Searching for 𝑃(𝑡) such that:

• 𝑃 0 = 𝑐1

• 𝑃′ 0 =
1

2
(𝑐2 − 𝑐0)

• 𝑃′ 1 =
1

2
(𝑐3 − 𝑐1)

• 𝑃 1 = 𝑐2

• Degree of 𝑃 is 3

• Basis:

• 𝐶0
3 𝑡 =

1

2
𝑡 1 − 𝑡 2

• 𝐶1
3 𝑡 =

1

2
(𝑡 − 1)(3𝑡2 − 2𝑡 − 2)

• 𝐶2
3 𝑡 = −

1

2
𝑡 3𝑡2 − 4𝑡 − 1

• 𝐶3
3 𝑡 =

1

2
𝑡2(𝑡 − 1)

𝐶 = 𝐻 ⋅ 𝑇𝐶𝐻 =
1

2

−1 3
2 −5

−1
0

0
2

−3 1
4 −1
1
0

0
0

Catmull-Rom-Splines

Catmull-Rom-Spline
• Piecewise polynomial curve

• Four control points per segment

• For 𝑛 control points we obtain (𝑛 − 3) polynomial segments

Application
• Smooth interpolation of a given sequence of points

• Key frame animation, camera movement, etc.

• Only G1-continuity

• Control points should be equidistant in time

43

Choice of Parameterization

Problem
• Often only the control points are given

• How to obtain a suitable parameterization 𝑡𝑖?

Example: Chord-Length Parameterization

𝑡0 = 0

𝑡𝑖 = ෍

𝑗=1

𝑖

𝑑𝑖𝑠𝑡(𝑃𝑖 − 𝑃𝑖−1)

• Arbitrary up to a constant factor

Warning
• Distances are not affine invariant !

• Shape of curves changes under transformations !!

44

Parameterization

Chord-Length versus uniform Parameterization
• Analog: Think 𝑃(𝑡) as a moving object with mass that may overshoot

45

Uniform

Chord-Length

B-Splines

Goal
• Spline curve with local control and high continuity

Given
• Degree: 𝑛

• Control points: 𝑝0, … , 𝑝𝑚 (Control polygon, 𝑚 ≥ 𝑛 + 1)

• Knots: 𝑡0, … , 𝑡𝑚+𝑛+1 (Knot vector, weakly monotonic)

• The knot vector defines the parametric locations where segments join

B-Spline Curve

𝑃 𝑡 = ෍

𝑖=0

𝑚

𝑁𝑖
𝑛(𝑡)𝑝𝑖

• Continuity:

• Cn-1 at simple knots

• Cn-k at knot with multiplicity 𝑘

46

B-Spline Basis Functions

Recursive Definition

47

0

N
i

i

i

Nn−1 (t)
i+1

i+n+1 i+1

i+n+1n−1

i

i+n
t − t

t −t
(t)−

t − t

t −tiN n (t)=


1 if ti  t  ti+1

0 otherwise
N (t) =

0 1 2 3 4

0 1 2 3 4 5

N0
0 N1

0 N2
0 N3

0 N4
0

N0
1 N1

1 N2
1 N3

1

5 Uniform Knot vector

B-Spline Basis Functions

Recursive Definition
• Degree increases in every step

• Support increases by one knot interval

48

B-Spline Basis Functions

Uniform Knot Vector
• All knots at integer locations

• UBS: Uniform B-Spline

• Example: cubic B-Splines

Local Support = Localized Changes
• Basis functions affect only (𝑛 + 1) Spline segments

• Changes are localized

49

Bn = N n
i i

Pn = dn
i i

Degree 2

B-Spline Basis Functions

Convex Hull Property
• Spline segment lies in convex Hull of (n+1) control points

• (𝑛 + 1) control points lie on a straight line ⟹ curve touches this line

• 𝑛 control points coincide ⟹ curve interpolates this point and is tangential to the control polygon

50

Degree 2

Normalized Basis Functions

Basis Functions on an Interval
• Knots at beginning and end with multiplicity

• NUBS: Non-uniform B-Splines

• Interpolation of end points and tangents there

• Conversion to Bézier segments via knot insertion

51

deBoor-Algorithm

Recursive Definition of Control Points
• Evaluation at 𝑡: 𝑡𝑖 < 𝑡 < 𝑡𝑖+1: 𝑖 ∈ 𝑙 − 𝑛, … , 𝑙

• Due to local support only affected by (𝑛 + 1) control points

𝑃𝑖
𝑟 𝑡 = 1 −

𝑡 − 𝑡𝑖+𝑟

𝑡𝑖+𝑛+1 − 𝑡𝑖+𝑟
𝑃𝑖

𝑟−1 𝑡 +
𝑡 − 𝑡𝑖+𝑟

𝑡𝑖+𝑛+1 − 𝑡𝑖+𝑟
𝑃𝑖+1

𝑟−1 𝑡

𝑃𝑖
0 𝑡 = 𝑃𝑖

Properties
• Affine invariance

• Stable numerical evaluation

• All coefficients > 0

52

Pn (t) = d n
i i

Knot Insertion

Algorithm similar to deBoor
• Given a new knot 𝑡

• 𝑡𝑖 < 𝑡 < 𝑡𝑖+1: 𝑖 ∈ 𝑙 − 𝑛, … , 𝑙

• 𝑇∗ = 𝑇 ∪ {𝑡}

• New representation of the same curve over 𝑇∗

𝑃∗ 𝑡 = ෍

𝑖=0

𝑚+1

𝑁𝑖
𝑛(𝑡)𝑃𝑖

∗

𝑃𝑖
∗ = 1 − 𝑎𝑖 𝑃𝑖−1 + 𝑎𝑖𝑃𝑖

𝑎𝑖 =

1 𝑖 ≤ 𝑙 − 𝑛
𝑡 − 𝑡𝑖

𝑡𝑖+𝑛 − 𝑡𝑖
𝑙 − 𝑛 + 1 ≤ 𝑖 ≤ 𝑙

0 𝑖 ≥ 𝑙 + 1

Applications
• Refinement of curve, display

53

Consecutive insertion of three knots at

𝑡 = 3 into a cubic B-Spline.
First and last knot have multiplicity 𝑛

𝑇 = (0,0,0,0,1,2,4,5,6,6,6,6), 𝑙 = 5

Conversion to Bézier Spline

B-Spline to Bezier Representation
• Remember:

• Curve interpolates point and is tangential at knots of multiplicity 𝑛

• In more detail: If two consecutive knots have multiplicity 𝑛

• The corresponding spline segment is in Bézier from

• The (𝑛 + 1) corresponding control polygon form the Bézier control points

54

NURBS

Non-Uniform Rational B-Splines
• Homogeneous control points: now with weight 𝑤𝑖

• 𝑃′𝑖 = 𝑤𝑖𝑥𝑖 , 𝑤𝑖𝑦𝑖 , 𝑤𝑖𝑧𝑖 , 𝑤𝑖 = 𝑤𝑖𝑃𝑖

𝑃′ 𝑡 = ෍

𝑖=0

𝑚

𝑁𝑖
𝑛(𝑡)𝑃′𝑖

𝑃 =
σ𝑖=0

𝑚 𝑁𝑖
𝑛(𝑡)𝑃𝑖𝑤𝑖

σ𝑖=0
𝑚 𝑁𝑖

𝑛(𝑡) 𝑤𝑖
= ෍

𝑖=0

𝑚

𝑅𝑖
𝑛(𝑡)𝑃𝑖𝑤𝑖 , 𝑤𝑖𝑡ℎ 𝑅𝑖

𝑛 𝑡 =
𝑁𝑖

𝑛(𝑡) 𝑤𝑖

σ𝑖=0
𝑚 𝑁𝑖

𝑛(𝑡) 𝑤𝑖

55

NURBS

Properties
• Piecewise rational functions

• Weights

• High (relative) weight attract curve towards the point

• Low weights repel curve from a point

• Negative weights should be avoided (may introduce singularity)

• Invariant under projective transformations

• Variation-Diminishing-Property (in functional setting)

• Curve cuts a straight line no more than the control polygon does

56

Examples: Cubic B-Splines

57

