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History of Animation ‘7

Before Animation

N

Eo ¥ 2 RS

J
&

Shahr-e Sukhteh, Iran 3200 BCE



History of Animation ‘7

Before Animation
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History of Animation ‘7

The Phenakistoscope

» First systematic truly moving animation - the phenakistoscope (to be viewed in the mirror through the
slit in the spinning disc)

PHENAKISTOSCOPE - Tribute to Joseph Plateau - - YouTube



https://www.youtube.com/watch?v=UqwkdlwmHig

History of Animation

First Film

* Used for research purposes
in order to answer the question: do horses life all four limbs off the ground in gallop?

y -

Sallie Gardner at a Gallop (1878) - YouTube



https://www.youtube.com/watch?v=JaumV0FgwBg

How Does it Work? ‘7

Computer animation is a sequence of still images rapidly changing at a fixed rate

The mechanism:

* Retinal persistence (our light receptors hold the perceived state over a couple of milliseconds)
scientifically disproved

* Beta phenomenon: visual memory in brain - not eyeball

* Phi phenomenon: brain anticipates, giving sense of motion (it’s Gestalt psychology again!)

Animation basics: The optical illusion Phi Phenomenon - YouTube

of motion - TED-Ed - YouTube



https://www.youtube.com/watch?v=V8A4qudmsX0
https://www.youtube.com/watch?v=L2-swEdDXsc

How Does it Work?

Motion
* Motion is a pre-attentive phenomenon
* — It has a stronger power to render things distinguishable for us than color, shape, ...
e Back to Human Visual System: our eyes are more sensitive to motion at periphery
* That’s why we are prone to see “ghosts” in the corner of our visual field

* Motion triggers the orienting response / reflex (an organism's immediate response to a change in its
environment, when that change is not sudden enough to elicit the startle reflex)

* Motion parallax provide 3-D cue (like stereopsis) — it means that we can understand depth in moving
scenes despite not having the stereo-visual observation




Animation Technology ‘7

“The Disney workflow”

* Senior artist draws keyframes

* Assistant draws in-betweens (tedious and labor intensive process)

keyframe
keyframe keyframe

! Y
inbetweens (“tweening”)

In modern animation software the workflow is similar

* You, as an artist decide on the key moments of the movement, and the software interpolates the
geometry in the timesteps in between



Keyframing

Basic idea:

* Specify important events only

* Fills in the rest via interpolation / approximation

Key frames / Events:
* Position
e Color

e Light intensity . - keyframes

e Camera zoom

* etc.




What Can be Animated? ‘7

Camera Light Source Geometry Shading
* Position * Position * Position * Transparency
* Direction * Direction * Affine Transform * Textures
* Focal length e Radiant Power * Rotation » Diffuse properties
* Motion * etc.
* Scaling
* Shearing

Example

Position is one of the most common characteristics, which is provided via Vec3f values

If the sequence contains 240 frames, for object A we can assign e.g. frames 0, 100 and 240 as
keyframes and for object B - frames 10, 20 and 200

Next we need to provide 3 positions for object A and 3 positions for object B for every keyframe, e.g.

« A.posl = Vec3f(7, 0, 1);
A.pos2 = Vec3f(10, 0, 10);

For the frames lying in-between 0 and 100, interpolate the position of object A using A.posl and
A.pos2

By analogy proceed with object B and all other frames

10



Interpolation via Polynomial Curves

Curve descriptions

e Explicit:
* y=fk)
e y(x) = +Vrz —x2
* Implicit:
* Flx,y) =0

. x2 4+ y2 — 2=y
* Parametric:

c x=f,(0), y= fy(t)
. x(t) = rcos2mt

y(t) = rsin2mt’ t€[0,1]

Polynomials

o x(t) = ag+ ast + ayt? + azt3 + -

restricted domain

unknown solution set

flexibility and ease of use

* Avoids complicated functions (e.g. pow (), exp(), sin(), sqrt())

* Use simple polynomials of low degree

11



Interpolation via Polynomial Curves ‘7

Monomial basis

* Simple basis: 1, t, t2, ... (t usually in [0, 1])

Polynomial representation

Degree <«

x(t) = ag + a t + ayt? +ast> + - , x(t)
Y() = by + byt + byt? +| b3 Coefficients p; ER®  p(p) = [ y(¢) | = Z

1
n al
(bi) £
z(t) = co + 1t +leat?|+lest® -, Monomials < z(t)) =0 \Ci/ |

» Coefficients can be determined from a sufficient number of constraints (e.g. interpolation of given
points)

* Given (n + 1) parameter values t; and points P;

* Solution of a linear system in the A; - possible, but inconvenient

Matrix representation

aTl bn CTl
ag by Co

12



Derivatives of a Polynomial Curve ‘7

Derivative
* Polynomial of degree (n — 1)
P N
dl;it) =P'(t) = (nt"™! (n—1t"2 - 1 0) an5—1 bn3—1 Cn5—1
Ao bo Co

* Derivative at a point is equal to the tangent vector at that point

Example

P(t) = (cos2mt sin 2mt) (6 g)

P'(t) = ( —2m -sin2nt 2m- cos 2mt) (7(; 2)

x'(t) = —2mr - sin 2mt
y'(t) = 2mr - cos 2mt

dy y'(t) 2mr-cos2mt _ S ’
dx x(¢) —2mr-sin2mt o :

13
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Derivatives ‘7

Continuity and smoothness between parametric curves

* There are two criteria for continuity:
« Geometric continuity G°
* Parametric continuityC°

* If curve Pends in the same point where curve P, starts, it is said that we have both G° and
C°continuity

Py () P (1)
P,(t)
P,(t)
Not continuous Continuous
P (1) # P(¢) P1(1) = P,(0)

14



Derivatives ‘7

Continuity and smoothness between parametric curves

* |f the tangent vectors at the joint are equally directed P'; (1) = kP’,(0)
* Itis said that we have geometric continuity G*!
* |f the tangent vectors at the joint are equal P'; (1) = P',(0)

* Itis said that we have parametric continuity C?

* Similar for higher derivatives

P'1(1)

Gl -continuous C1-continuous
G + tangent vectors parallel CO+ tangent vectors parallel
P'1(1) = kP'z(O) P'1(1) = P’z(o)

15



Lagrange Interpolation

Given a set of key-points:
« (t,P), LER, P; € R

Find a polynomial P such that:
* Vi P(t;) =P

(to, Do)

(t1,01)

(t2,P2)

16



Lagrange Interpolation ‘7

Given a set of points:
« (ty,B), tLER, P €R?
Find a polynomial P such that:
* Vi P(t;)) =p;
For each point associate a
Lagrange basis polynomial:

n

n t_tj
Li(t) = l_[
i#j

where

1)

g (t2,P2)
_.-'(tOJ pO)
®

It =68 =
l(t]) % {0 otherwise

\%

O -
.

......

.....
------
.....
.........
...........

17



Lagrange Interpolation ‘7

Given a set of points:
« (t,P), LER, P; € R

Find a polynomial P such that:
* Vi P(t;) =P

For each point associate a (t1,D1)
Lagrange basis polynomial:

n

o TTt— 8 i
L) = ﬂti s (to, Bo)
j=0
i#j

(t2,P2)

where

1 i=j
Mt =g . =
‘(t]) % {O otherwise

Add the Lagrange basiswith points as weights:

n Po,x Po,y Po,z
P®) = ) LIOF Por=ag - | Ty P P
t=0 Pn-1x Pn-1y Pn-1z

18



Lagrange Interpolation ‘7

For each point associate a Lagrange basis polynomial:

t—t
IMOE 1_[ .
Lt —

Jj=0
i#j
Simple Linear Interpolation
e T= {tO'tl}
1 . t—t4
Ly(8) = P—
1 . t—t
Li(t) = P—

Simple Quadratic Interpolation

c T = {to;tl; tZ}

t—ti t—t
13(t) = —— -

o —titg — 1ty

t—ty t—t
13(t) = —— -

th —tot1 — Ly

t—ty t—t;
L3(t) =

by —tot, — 44

A
1+ o HO
| l >
to tl
A
14
>
14
19




Problems

Problems with a single polynomial

Degree depends on the number of interpolation constraints
Strong overshooting for high degree (n > 7)

Problems with smooth joints

Numerically unstable

No local changes

Lg(u)l

20



Splines

Functions for interpolation & approximation
e Standard curve and surface primitives in geometric modeling
* Key frame and in-betweens in animations

 Filtering and reconstruction of images

Historically
* Name for a tool in ship building
* Flexible metal strip that tries to stay straight
* Within computer graphics:

* Piecewise polynomial function

P(t) Q) R(t)

21



Linear splines
 Defined by two points: py, P,
* Searching for P(t) such that:

« P(0)=p,

« P(1) =p,

e DegreeofPis1
* Basis:

e Ty(t)=1—-t

e To(t) =t

P(t) = p1T1(t) + poT(t)

Linear Interpolation

A
1 T4 T>
I >
1
Linear basis =
>T
PO =|(1—t ©) (231)
b2

22



Linear Interpolation

monomial basis M —| / \ l_ Linear basis

t 1) 1-t t)

23



CO-continuous

Linear Interpolation

P(t)T=M-(_11 (1))(

T
P1
ST
P2

)

24



Hermite Interpolation ‘7

Cubic splines
 Defined by two points: py, P, and two tangents: 71, T,
* Searching for P(t) such that:
* P(0) =p, 1
« PI(0)=1,
« P'(1) =1,
« P(1) =p, >

* Degreeof Pis 3
* Basis:

o H3(t) =?

. H}(t) =2

. H3(t) =?

. H3(t) =?

P(t) = P(0)H5(t) + P'(0) HP (t) + P'(1) H3 (t) + P(1)H3(t)

25



Hermite Interpolation

Cubic splines
 Defined by two points: py, P, and two tangents: 71, T,

* Searching for P(t) such that:
* P(0) =p,

P,(O) - '?1
P'(1) = fz

P(1) = ﬁz

Degree of P is 3

* Basis:
o H3(t) =?
. H}(t) =2
. H3(t) =?
. H3(t) =?

T
P2

p1
P®)'=M-H- .
o7

26



Hermite Interpolation ‘7

Cubic splines
 Defined by two points: py, P, and two tangents: 71, T,

* Searching for P(t) such that:

* P(0) =p, « P =3 ¢2 t 1)-H-G
* PO =17 « P()'=(G¢2 2t 1 0)-H-G
« P'(1) =1,
« P(1) =p, « BI=P0O)Y =0 0 0 1)-H-G
* Degreeof Pis 3 « =P =0 0 1 0)-H-G
* Basis: . fzzp'(l)Tz(g 2 1 0)-H-G

* Hi(t) =? - pl=P)'=(1 1 1 1)-H-G
* Hi(t) =?
* H3(t) =?
. H3(t) =? e o1

P1 0 0 0 1 P1

a|_(o 0 10|, %

zl 3 210 zl

ﬁ; 1 1 1 1 ﬁ;

27



Hermite Interpolation

Cubic splines
 Defined by two points: py, P, and two tangents: 71, T,
* Searching for P(t) such that:
* P(0) =p,
« P(0) =14
- P'(1) =1,
« P(1) =p,
* Degreeof Pis 3
* Basis:
e H3(t) =?
+ HP (D) =7
.+ Hi () =7
* H3(0) =7
-3

0
1

.

Il
_wo O
_ N O
_ e O
_ 0O

1
—2

1

0

1
-1

—2

o oW

28



Hermite Interpolation ‘7

Cubic splines 5111 (1 =2
 Defined by two points: py, P, and two tangents: 71, T, T -3 =2 -1/ '3
* Searching for P(t) such that: (1) (1) 8 8
« P(0) =p;
.« PI(0) =17 (H3(t) H3(t) H3(@) Hi@))
- P'(1) =1,
- P(1) =p, ()
e Degreeof Pis 3 T
* Basis: 1
e« H3(t)=(1—-1)2%(1+2t)
o H}(t) =t(1—1t)?
« H3(t) =t (t—1)
« H3(t) = (3-20)t?
> I

29



Hermite Interpolation ‘7

Cubic splines 1 T T =3

* Basis: H = -3 -2 -1 3
e Hiyj(t) =(1-—-t
0 () =(1-1¢) ol lol lo

o H3(t) =t(1—1t)?

.« H3(6) = t2(t — 1) (H3(t) Hi(t) H3(t) H3()
« H3(t) = (3-2t)t?

Properties of Hermite Basis Functions f(‘t)

. H03 (H33) interpolates smoothly from 1to 0

 Hj and H3 have zero derivativeatt = 0and t = 1
* No contribution to derivative (H;, H3)

e Hiand Hjarezeroatt =0andt =1
« No contribution to position (H;, H3)

e Hi (H3)hasslopelatt=0(t =1)

* Unit factor for specified derivative vector

» [

30



Examples: Hermite Interpolation

y(t)
4 Tangent vector

direction A, at point
P,; magnitude varies
for each curve

Tangent vector
direction R, at point
P,; magnitude fixed l

-0
£ 0

for each curve

> X(1)

y(®)
A b

» X(f)

31



Bézier

Bézier splines
* Defined by 4 points:
* by, bs: start and end points
* by, b,: control points that are approximated
 Searching for P(t) such that:
« P(0) = b,
* P'(0) = 3(by — by)
* P'(1) = 3(b3 — by)
* P(1) =b;
* Degreeof Pis3

qluw)

qQ’'(t)

32



Bézier

Bézier splines
* Defined by 4 points:
* by, bs: start and end points
* by, b,: control points that are approximated
 Searching for P(t) such that:
« P(0) = b,
* P'(0) = 3(by — by)
* P'(1) = 3(b3 — by)
* P(1) =b;
* Degreeof Pis3

ko 2
qluw)
q’'(s)
ko,
“ qQ'¢t)
T T
P1 1 0 0 0 bg
ti|_(-3 3 0 offb
t] 0 0 -3 3|l
p% O 0 0 1 b§

33



Bézier
Bézier splines
* Defined by 4 points: -1 3 —3
. 3 —6 3
* by, bs: start and end points B=H- -Tgy= _3 3 0
* by, b,: control points that are approximated 1 0 0
 Searching for P(t) such that:
+ P(0) = b, "0
* P'(0) = 3(by — by)
(1)

* P'(1) =3(b3 — by)
* P(1) =bs
* Degreeof Pis 3

* Basis:
* B3(t) =(1—-1t)?
« Bj(t) = 3t(1 —t)?
« B3(t) =3t2(1—-1t)
e B3(t) =1t3

e Bernstein polynomial:

- Bre) = ()i - on

(1)

P(t) = byBj(t) + by B (t) + b, B3 (t) + b3B3(t)

oS oo

34



Bézier Properties

Advantages:

Disadvantages

End point interpolation
Tangents explicitly specified
Smooth joints are simple
* P3, P, Ps collinear —» G* continuous
e P.— P, =P, — P; — C!continuous
Geometric meaning of control points
Affine invariance
Convex hull property
e ForO0<t<1: B;(t)=0
Symmetry: B;(t) = B,,_;(1 —t)

Smooth joints need to be maintained explicitly

e Automatic in B-Splines (and NURBS)

J

35



DeCasteljau Algorithm

Direct evaluation of the basis functions P(t) = ),; b;B;*(t)

e Simple but expensive

Use recursion

* Recursive definition of the basis functions
Bi(6) = (?) t'(1 - )" =Bl (0) + (1 —)BF (1)

* Inserting this once yields:

n n-1
P(O) = ) BYBI(®) = ) BIBITL®)
i=0 i=0

* With the new Bézier points given by the recursion
b (t) = b;

bX(t) = thE 1 (t) + (1 — )b 1(t)

36



DeCasteljau Algorithm

DeCasteljau Algorithm:

* Recursive degree reduction of the Bezier curve by using the recursion formula for the Bernstein

polynomials .
n n—
P(t)= ) B)BI(t)= ) biBI 7 (t) =--=b]'(t) 1
210"
bi(t) = thii (1) + (1 — )b (1)
Example:
« t=0.5

J

37



DeCasteljau Algorithm ‘7

Subdivision using the deCasteljau Algorithm

» Take boundaries of the deCasteljau triangle as new control points for left / right portion of the curve

Extrapolation

e Backwards subdivision

* Reconstruct triangle from one side

38



Catmull-Rom-Splines

Goal

* Smooth (C1)-joints between (cubic) spline segments

Algorithm
e Tangents given by neighboring points Pi-1 Pi+1

* Construct (cubic) Hermite segments

Advantage
* Arbitrary number of control points
* Interpolation without overshooting

e |ocal control

39



Catmull-Rom splines
* Defined by 4 points:

C1,Co: start and end points

Catmull-Rom-Splines

* (o, C3: neighbor segment points

 Searching for P(t) such that:

P0) =c;
P'(0) = 2 (cz — o)
P'(1) = (c3 — ¢1)

P(1) = c,
Degree of P is 3

40



Catmull-Rom splines
* Defined by 4 points:

* (q,Cy:start and end points

Catmull-Rom-Splines

* (o, C3: neighbor segment points

 Searching for P(t) such that:

P0) =c;
P'(0) = 2 (cz — o)
P'(1) = (c3 — ¢1)

P(1) = c,
Degree of P is 3

41



Catmull-Rom-Splines

Catmull-Rom splines
* Defined by 4 points:
* (q,Cy:start and end points
* (o, C3: neighbor segment points
 Searching for P(t) such that:
« P(0) =c
P'(0) =3 (cz = ¢o)

P'(1) =5 (c3 = 1)
P(1) =c, C=H:-Tcy =
Degree of P is 3

- Basis:
. G =5t(1—1)?
» CHD) =5 (-3t -2t - 2)
. C3(t) = —%t(BtZ —4t—1)

GO =5~ 1)

42



Catmull-Rom-Splines

Catmull-Rom-Spline

e Piecewise polynomial curve
* Four control points per segment

e For n control points we obtain (n — 3) polynomial segments

Application
* Smooth interpolation of a given sequence of points
* Key frame animation, camera movement, etc.
* Only G'-continuity

* Control points should be equidistant in time

43



Choice of Parameterization

Problem

e Often only the control points are given

* How to obtain a suitable parameterization t;?

Example: Chord-Length Parameterization

t0=0

i
ti = Z diSt(Pi - Pi—l)
j=1
e Arbitrary up to a constant factor

Warning

e Distances are not affine invariant !

* Shape of curves changes under transformations !!

44



Parameterization

Chord-Length versus uniform Parameterization

* Analog: Think P(t) as a moving object with mass that may overshoot

/
4 / _
{f / Uniform
/ A/
/
» {
" e
"'"# Chord-Length
f__‘ /
= \
\ prd
e ol ,,..-l"f

45



B-Splines
Goal
* Spline curve with local control and high continuity
Given
* Degree: n
* Control points: Do - Pm (Control polygon, m = n + 1)
e Knots: to) o r trnan+1 (Knot vector, weakly monotonic)

* The knot vector defines the parametric locations where segments join
B-Spline Curve
m
P(H) = ) NI'(®)p,
i=0

* Continuity:
o C™1atsimple knots

o C™kat knot with multiplicity k

46



Recursive Definition

NiO (t) —

N, (t)=

Ny

B-Spline Basis Functions

I+n+1

1 if t<t<t,,

0 otherwise

t—t n_ t—t
— Nt -

ti+n _ti ti+n+1
NJ Ny

_ti+1

N ()

1+1

N

>

Uniform Knot vector

47



B-Spline Basis Functions ‘7

Recursive Definition

* Degree increases in every step

* Support increases by one knot interval

u)/ \ . NIH 1(1‘)
\ / o

= )N o) (f43 = )N o(ut (# = tiag)Nig 1 o(1) (tias = WN0 (1)
rr+7 ‘rr) (IH l'r+l) rl-3 fr+I ([:H rr+7)

/\ e N

() (02 = Ny () (= i N () (e = DN () (0= G )N s(0) (s = N (1) (0 = 5)Nisaa () (g — )N, (1)
(G010 = 1) (fir2 = 1) (tis2 = L) (fi13 = i) (fis2 = tip) (fiuz = li12) (fis3 = li2) (tirs = 1i43)

Lt"fj

48



B-Spline Basis Functions

Uniform Knot Vector

* All knots at integer locations
e UBS: Uniform B-Spline

* Example: cubic B-Splines

/7 Ve N, 7 ~
/ Sy e \
Ve 7\ i N
/ ¥ 4 N 7 N
/ s N\ 7/ \\ N
~ -~ ~ ~
T ey e o v e Woemss e Dediiie
= [ r 1 |

Local Support = Localized Changes

* Basis functions affect only (n + 1) Spline segments

* Changes are localized

Degree 2




B-Spline Basis Functions ‘7

Convex Hull Property

* Spline segment lies in convex Hull of (n+1) control points

Degree 2

* (n+ 1) control points lie on a straight line = curve touches this line

e n control points coincide = curve interpolates this point and is tangential to the control polygon

50



Normalized Basis Functions

Basis Functions on an Interval

* Knots at beginning and end with multiplicity
* NUBS: Non-uniform B-Splines
* Interpolation of end points and tangents there

* Conversion to Bézier segments via knot insertion

i

tetete0 tEl tE2 tE3 tEtrtEd

51



deBoor-Algorithm ‘7

Recursive Definition of Control Points
* EBvaluationatt: t; <t <t ;i €{l—mn, .. [}

* Due to local support only affected by (n + 1) control points

t—t; t —t;
PI(t) = (1 - ik )Pg‘ 1) + HT_ proi(e)
Citn+1 — Civr

i+n+1 = lYi+r
PP(t)="P
Properties dﬁn d]0~n+l din+2 d:)wm-?; ----- d?

e Affine invariance \ / \ / \ / /
e Stable numerical evaluation dipn i dy,

e All coefficients >0 \ / \ / /

I-n d!2n+1 d!22

d P"(t) =d;

I-n

52



Knot Insertion ‘7

Algorithm similar to deBoor

e @Given a new knot t
e L <t<tpi€f{l—n .., 0}
e T*"=T U {t}

* New representation of the same curve over T*

m+1

P*(t) = 2 NP ()P o
i=0

Pi* = (1 — al-)Pl-_l + Cll'Pi

f

1 i<l—n o
TN at1<i<i o
. = — —_ n S l S o —
LA Pa— 12 435 ¢ i o
| >
\ 0 i=l+1 Consecutive insertion of three knots at
Applications t = 3 into a cubic B-Spline.
First and last knot have multiplicity n
» Refinement of curve, display T = (0,0,0,0,1,2,4,5,6,6,6,6),l =5

p——N

53



Conversion to Bézier Spline

B-Spline to Bezier Representation

* Remember:

e Curve interpolates point and is tangential at knots of multiplicity n
* |In more detail: If two consecutive knots have multiplicity n

* The corresponding spline segment is in Bézier from

* The (n + 1) corresponding control polygon form the Bézier control points

54



NURBS

Non-Uniform Rational B-Splines

* Homogeneous control points: now with weight w;

!
© P’y = (wixg, wiyi, wiz, wi) = wiP

P'(O) = ) NP,
i=0

m
o N (t)Pw;
P = (&) P ZR?(t)PiWi:
i=0

1 0 l(t)Wl

with R (t) =

Sy =]
)

ISy v)

Nn(t) 1441

l 0 l(t)Wl

Iﬂt
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NURBS

Properties
* Piecewise rational functions
e Weights
* High (relative) weight attract curve towards the point
* Low weights repel curve from a point
* Negative weights should be avoided (may introduce singularity)
* |Invariant under projective transformations
* Variation-Diminishing-Property (in functional setting)

* Curve cuts a straight line no more than the control polygon does

56



Examples: Cubic B-Splines ‘7

57



