Computer Graphics Sergey Kosov

Lecture 15:

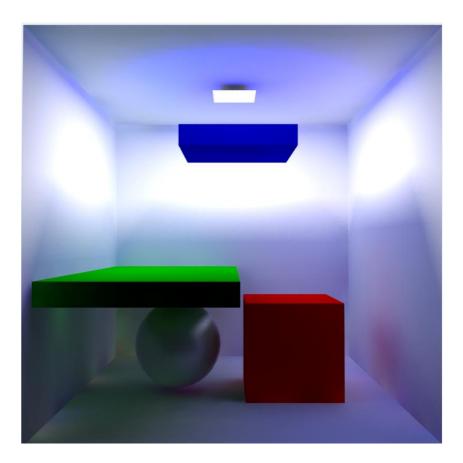
Global Illumination

Contents

- 1. Introduction
- 2. The Rendering Equation
- 3. Monte Carlo Integration
- 4. Path Tracing
- 5. Ambient Occlusion
- 6. Radiosity Equation

Why bother with physically correct rendering?

- As opposed to making up shaders that look good
 - When something goes wrong, you can reason about why, and how to fix it
 - It is easy to hack a material shader that looks realistic for specific lighting conditions, but extremely difficult to hack something that allways looks realistic
- Path-tracing may take longer to converge
- But we will know early if something looks wrong

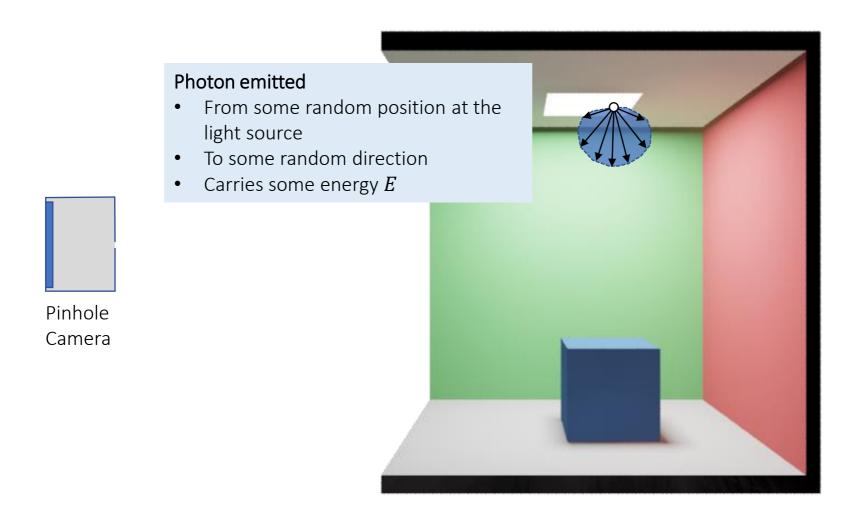


Where does an image come from?

Pinhole Camera

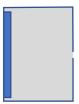
Where does an image come from?

• Position, direction and energy come from properties of the light

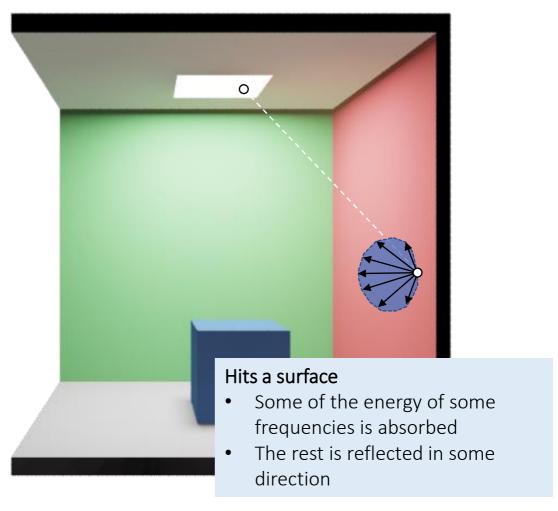


Where does an image come from?

- The amount of absorbed energy is a material property
- The direction in which it is reflected depends on the BRDF of the material
- Here, the material is red and diffuse, so green and blue frequencies will be absorbed and the reddish photon may bounce of in most any direction



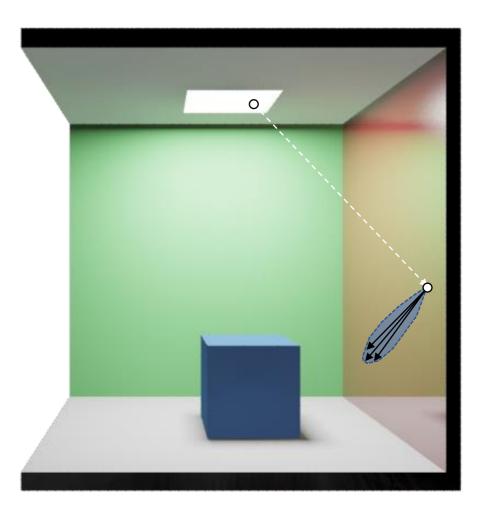
Pinhole Camera



Where does an image come from?

• Here, the surface is more of a mirror so little energy will be absorbed and the photon is more likely to bounce in the perfect reflection direction

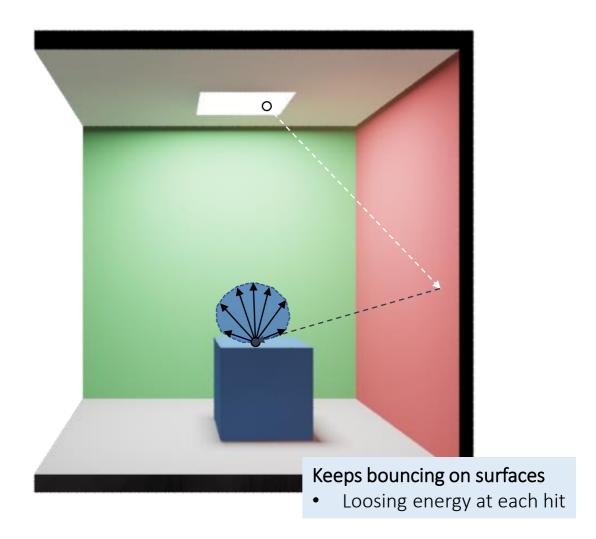
Pinhole Camera



Where does an image come from?

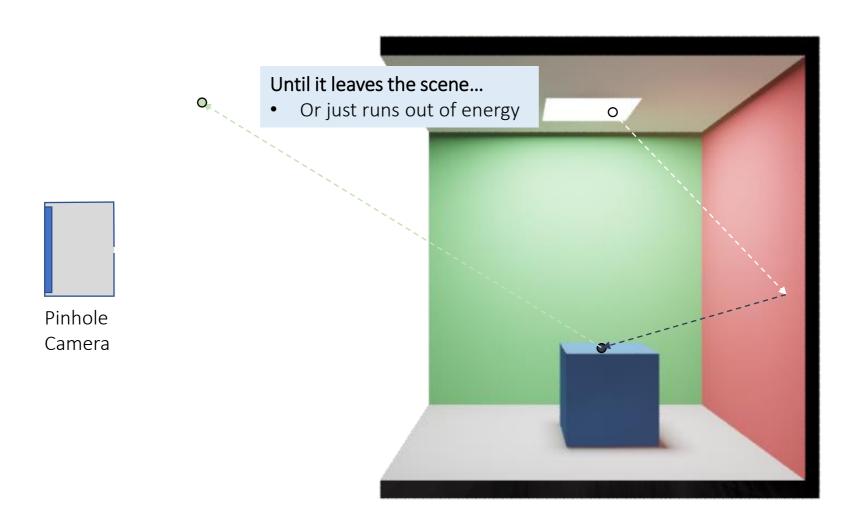
• The photon will keep bouncing on the surfaces...

Pinhole Camera



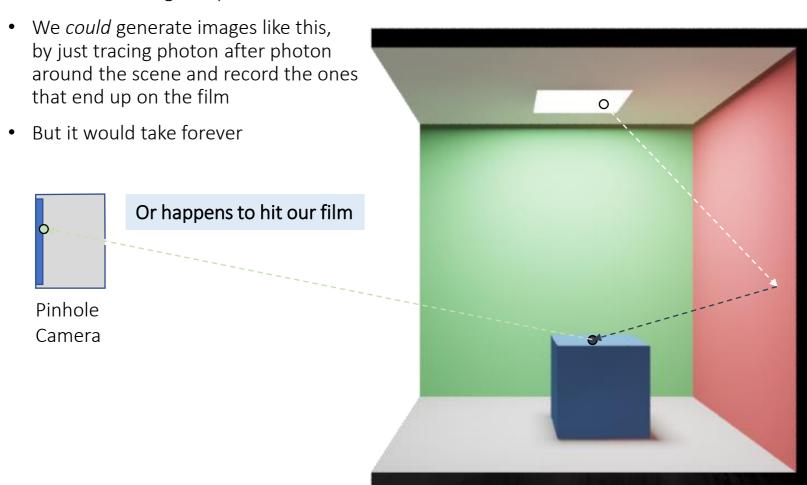
Where does an image come from?

• We could keep following this photon until it left the scene, or ran out of energy



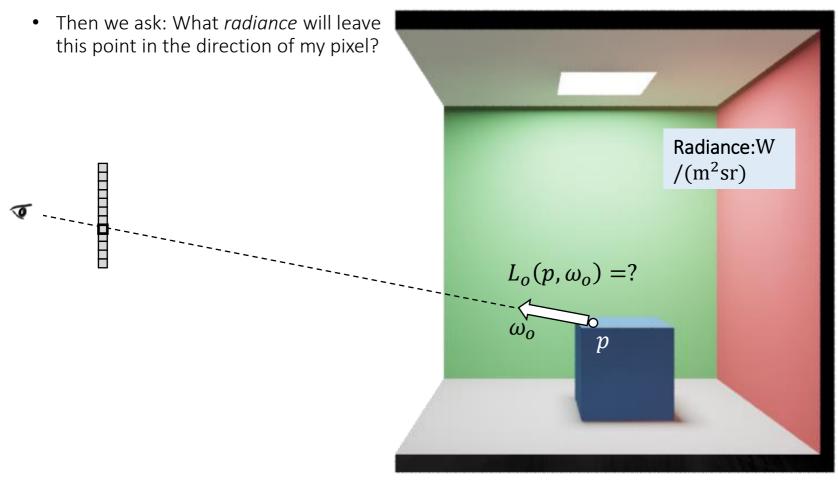
Where does an image come from?

• Or, by some chance it happens to reflect off a surface, go through the little pinhole and land on our film contributing to a pixel value

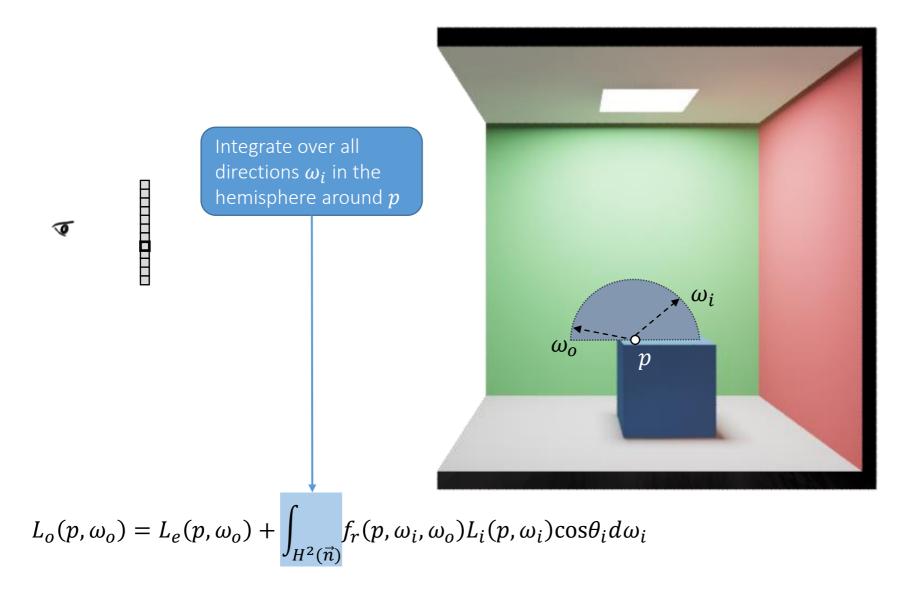


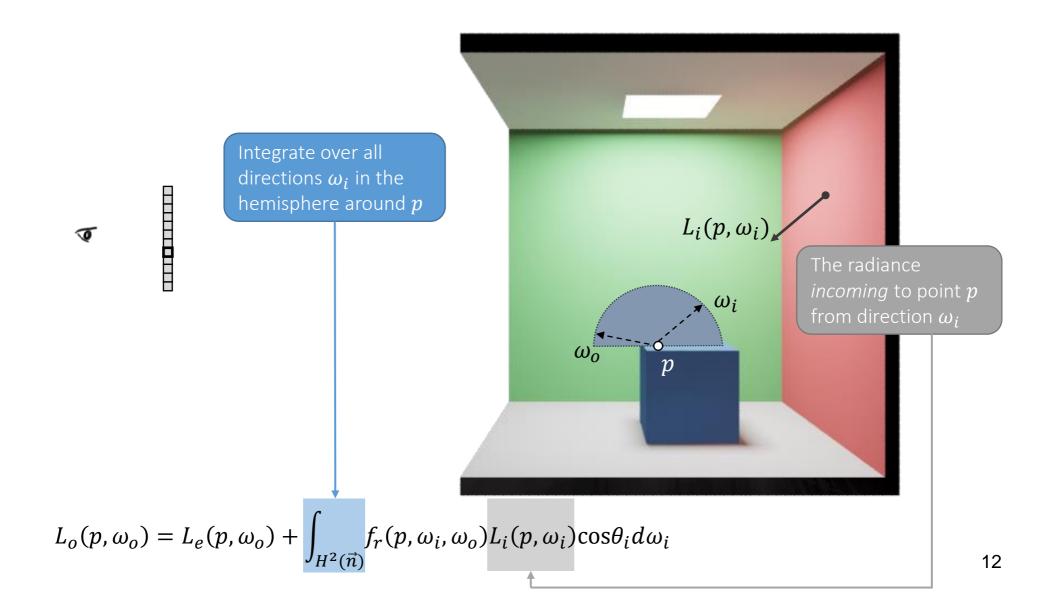
Backward Light Tracing

- Since most of the paths traced would have been wasted, we do this simulation backwards instead
- So, we shoot a ray through the pixel we are interested in, until we hit a surface



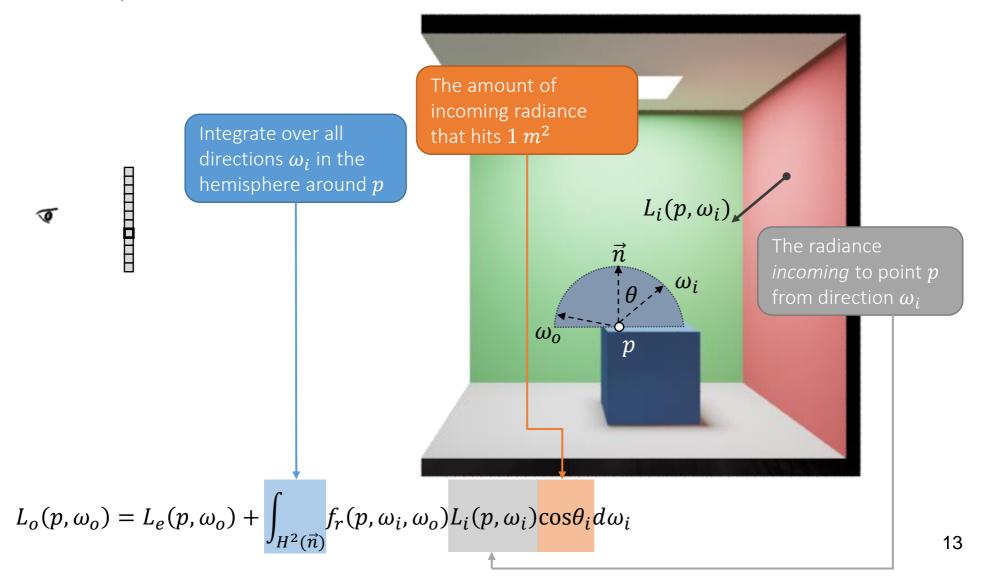
$$L_o(p,\omega_o) = L_e(p,\omega_o) + \int_{H^2(\vec{n})} f_r(p,\omega_i,\omega_o) L_i(p,\omega_i) \cos\theta_i d\omega_i$$





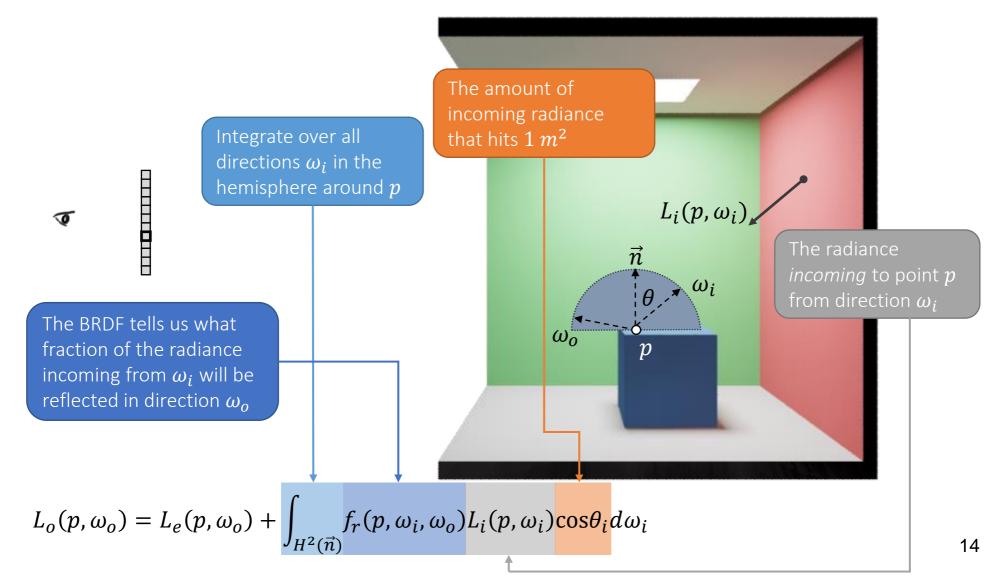
The cosine term

- Tells us which amount of the incoming radiance from direction ω_i will land on a unit surface area
- Independent of the material



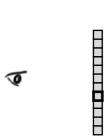
The BRDF

- A mirror surface will only have high values when $\omega_i = \omega_o$
- A diffuse surface has a constant BRDF



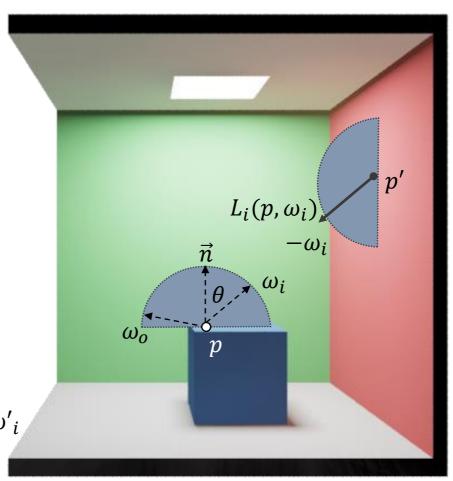
The BRDF

• We (usually) can not solve this equation analytically, since it depends on a scene which we have no nice mathematical description of



$$L_i(p, \omega_i) = L_o(p', -\omega_i)$$

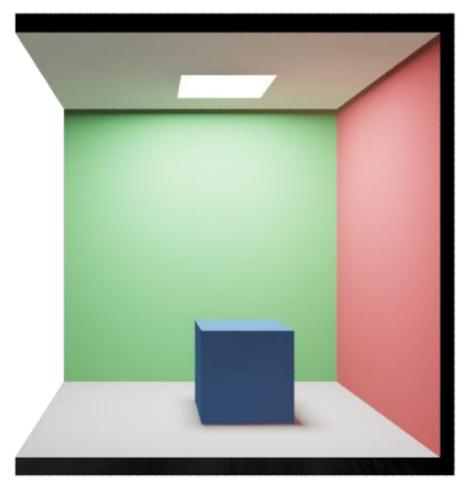
$$\begin{split} L_o(p',-\omega_i) &= L_e(p',-\omega_i) + \\ \int_{H^2(\vec{n})} f_r(p',\omega'_i,-\omega_i) L_i(p',\omega'_i) \cos\theta'_i d\omega'_i \end{split}$$



$$L_o(p,\omega_o) = L_e(p,\omega_o) + \int_{H^2(\vec{n})} f_r(p,\omega_i,\omega_o) L_i(p,\omega_i) \cos\theta_i d\omega_i$$

Numerical Integration

- But we can estimate the value of any integral using Monte-Carlo integration
- ullet We then take N random samples over the domain of the integral



$$L_o(p, \omega_o) \approx L_e(p, \omega_o) + \frac{1}{N} \sum_{i=0}^{N} \frac{f_r(p, \omega_i, \omega_o) L_i(p, \omega_i) \cos \theta_i}{p(\omega_i)}$$

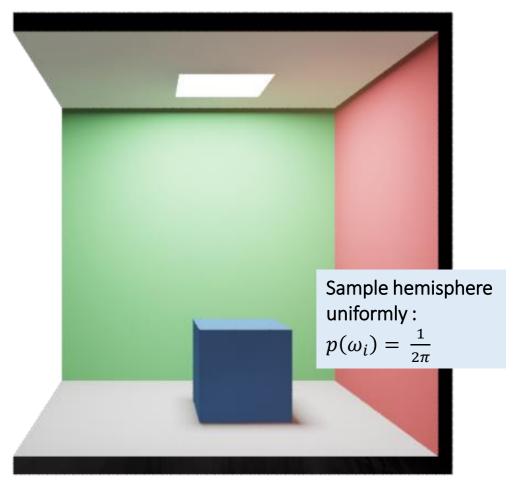
Numerical Integration

• This is an *unbiased* estimator, so the *expected value* will be exactly the radiance we are after

$$L_o(p, \omega_o) = \mathbb{E}\left[L_e(p, \omega_o) + \frac{1}{N} \sum_{i=0}^{N} \frac{f_r(p, \omega_i, \omega_o) L_i(p, \omega_i) \cos \theta_i}{p(\omega_i)}\right]$$

Numerical Integration

- This is an *unbiased* estimator, so the *expected value* will be exactly the radiance we are after
- Even if we only take ONE sample
- And even if we sample the hemisphere perfectly uniformly (making the PDF constant)



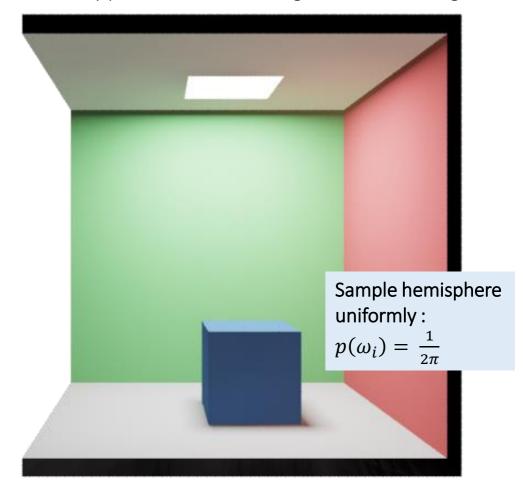
$$L_o(p,\omega_o) = \mathbb{E}\left[L_e(p,\omega_o) + \frac{1}{1} \sum_{i=0}^{1} \frac{f_r(p,\omega_i,\omega_o) L_i(p,\omega_i) \cos\theta_i}{p(\omega_i)}\right]$$

Numerical Integration

• Now we have a very simple estimator for the correct outgoing radiance from p

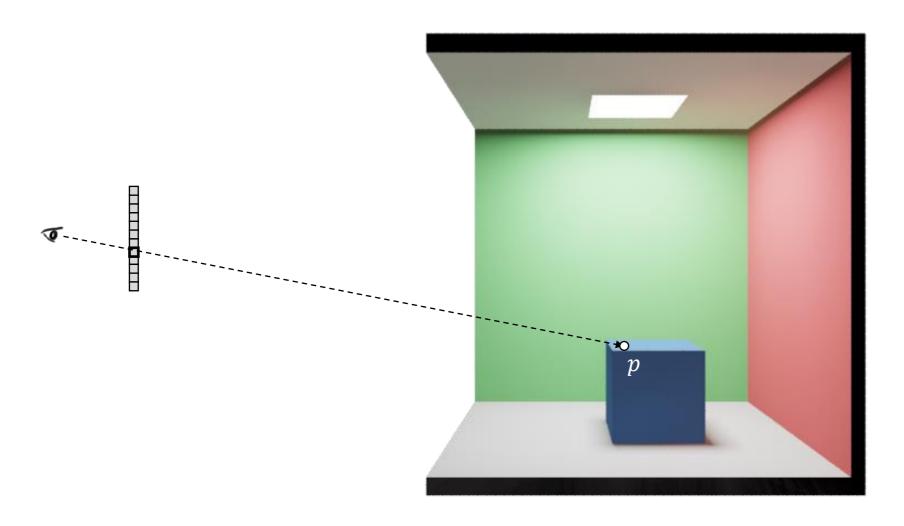
• Since it is unbiased we can evaluate this for every pixel, time and time again and the average will

converge towards the correct value



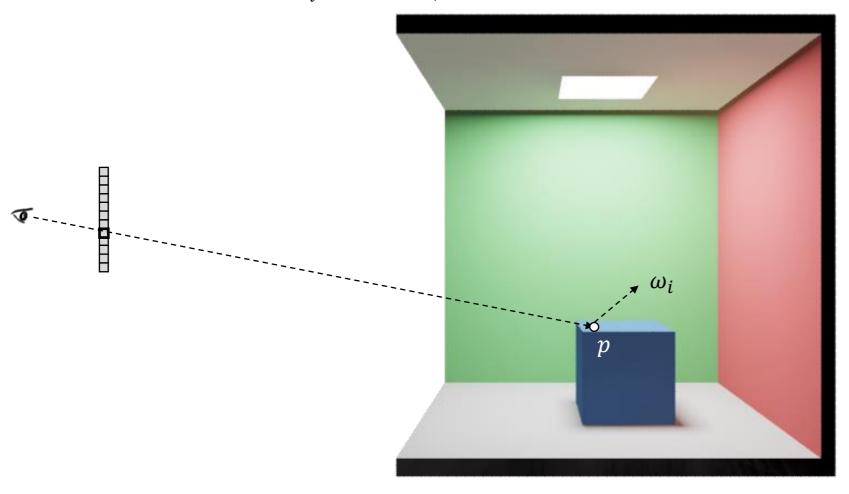
Basic path tracing algorithm

ullet Trace a ray through the pixel, to find the first intersection point p



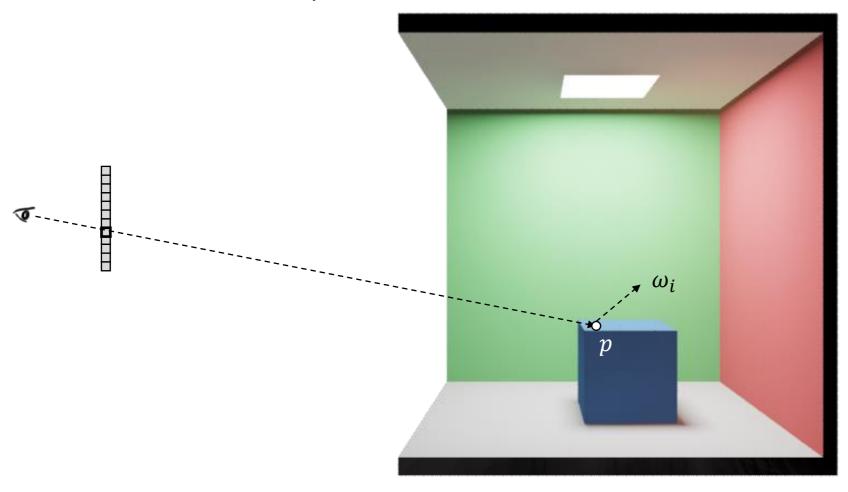
$$L_o(p, \omega_o) \approx L_e(p, \omega_o) + 2\pi f_r(p, \omega_i, \omega_o) L_i(p, \omega_i) \cos\theta_i$$

- ullet Trace a ray through the pixel, to find the first intersection point p
- Choose a random direction ω_i on the hemisphere



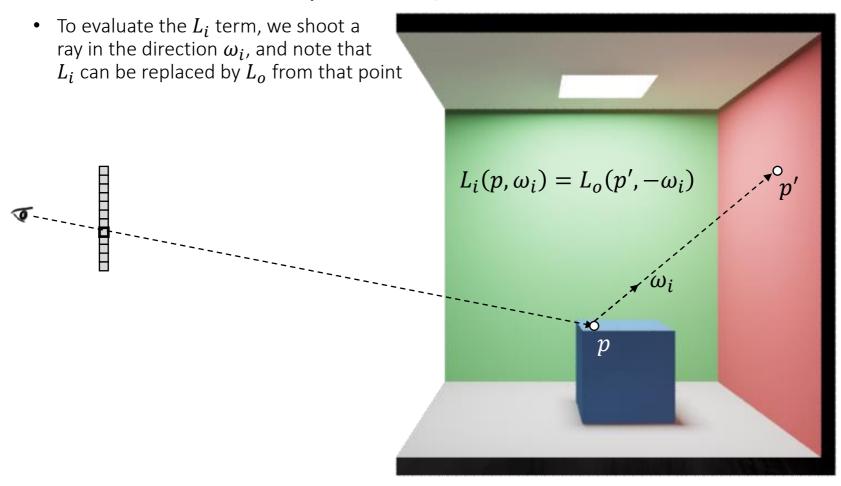
$$L_o(p, \omega_o) \approx L_e(p, \omega_o) + 2\pi f_r(p, \omega_i, \omega_o) L_i(p, \omega_i) \cos\theta_i$$

- ullet Trace a ray through the pixel, to find the first intersection point p
- Choose a random direction ω_i on the hemisphere



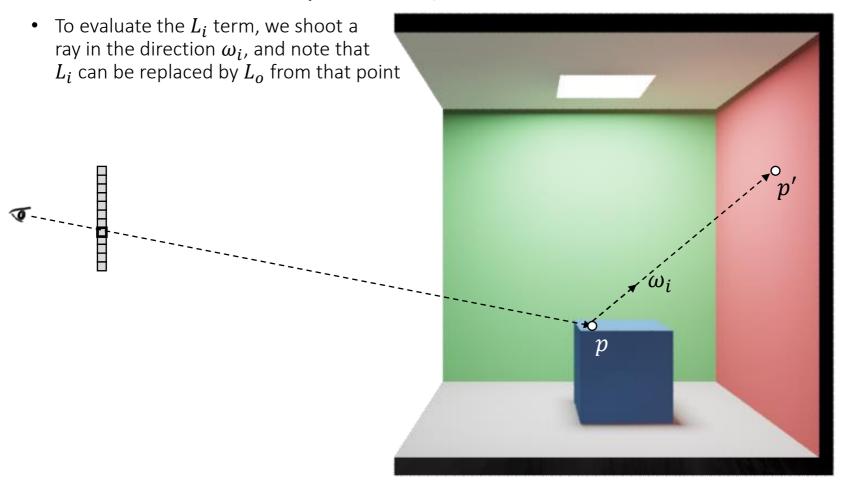
$$L_o(p, \omega_o) \approx 0 + 2\pi f_r(p, \omega_i, \omega_o) L_i(p, \omega_i) \cos\theta_i$$

- Trace a ray through the pixel, to find the first intersection point p
- Choose a random direction ω_i on the hemisphere



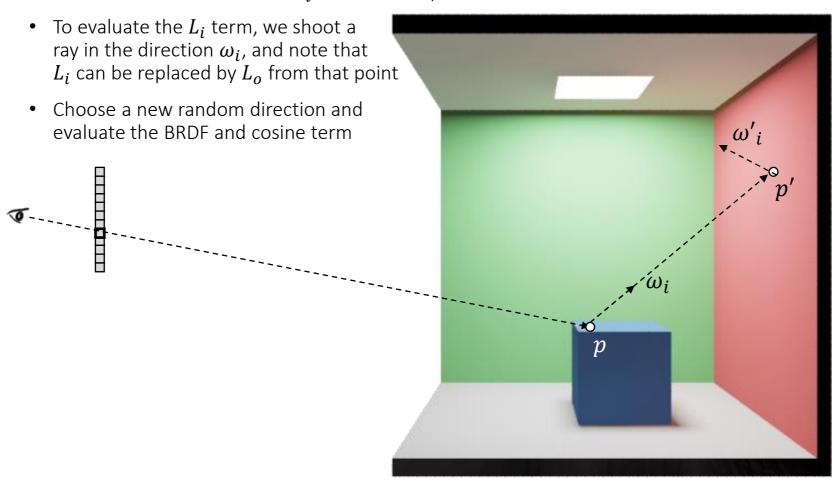
$$L_o(p, \omega_o) \approx 0 + 2\pi f_r(p, \omega_i, \omega_o) L_o(p', -\omega_i) \cos\theta_i$$

- Trace a ray through the pixel, to find the first intersection point p
- Choose a random direction ω_i on the hemisphere



$$L_o(p,\omega_o) \approx 0 + 2\pi f_r(p,\omega_i,\omega_o) [L_e(p',-\omega_i) + 2\pi f_r(p',\omega'_i,-\omega_i)L_i(p',\omega'_i)\cos\theta'_i]\cos\theta_i$$

- Trace a ray through the pixel, to find the first intersection point p
- Choose a random direction ω_i on the hemisphere



$$L_o(p,\omega_o) \approx 0 + 2\pi f_r(p,\omega_i,\omega_o)[0 + 2\pi f_r(p',\omega_i',-\omega_i)L_i(p',\omega_i')\cos\theta_i']\cos\theta_i$$

Basic path tracing algorithm

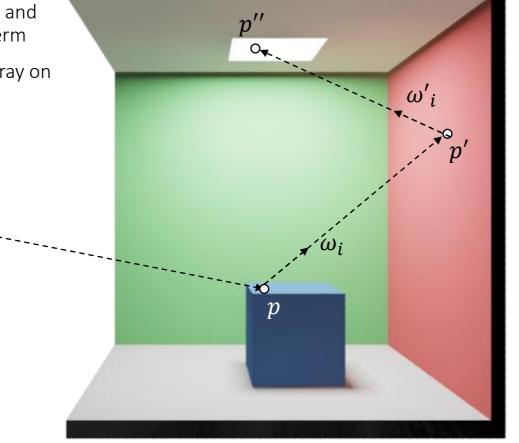
• Choose a random direction ω_i on the hemisphere

• To evaluate the L_i term, we shoot a ray in the direction ω_i , and note that L_i can be replaced by

 L_o from that point

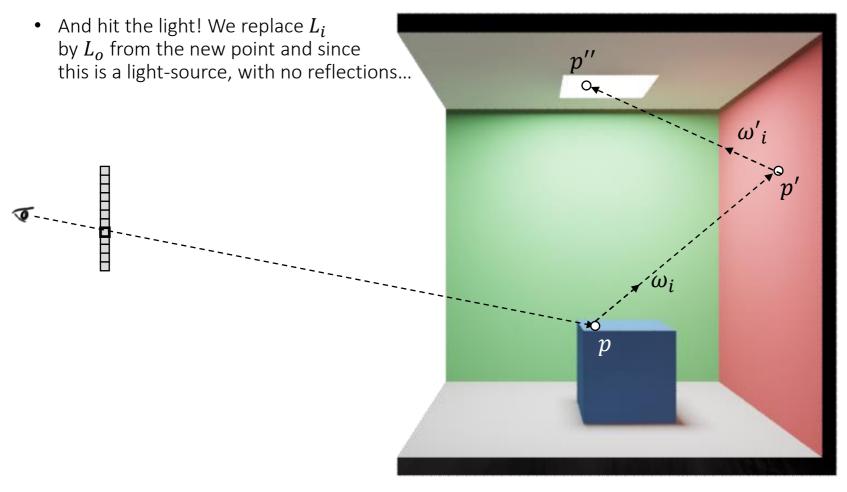
• Choose a new random direction and evaluate the BRDF and cosine term

• Shoo a new ray to find the next ray on the path...



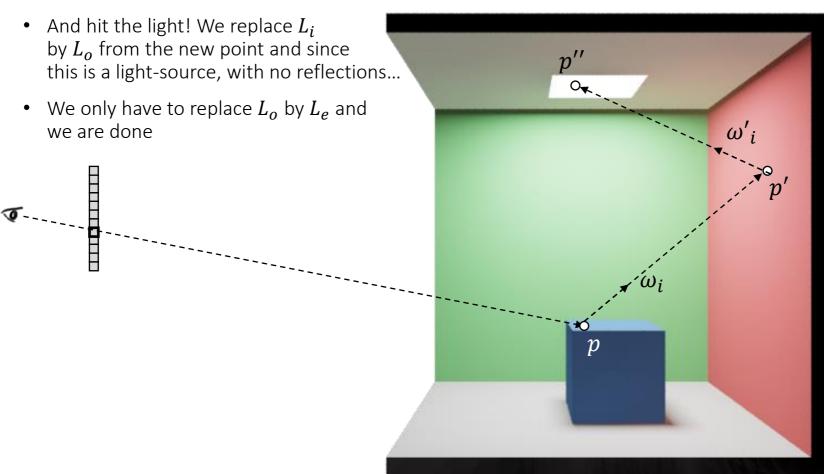
$$L_o(p, \omega_o) \approx 0 + 2\pi f_r(p, \omega_i, \omega_o)[0 + 2\pi f_r(p', \omega'_i, -\omega_i)L_i(p', \omega'_i)\cos\theta'_i]\cos\theta_i$$

- Choose a new random direction and evaluate the BRDF and cosine term
- Shoo a new ray to find the next ray on the path...



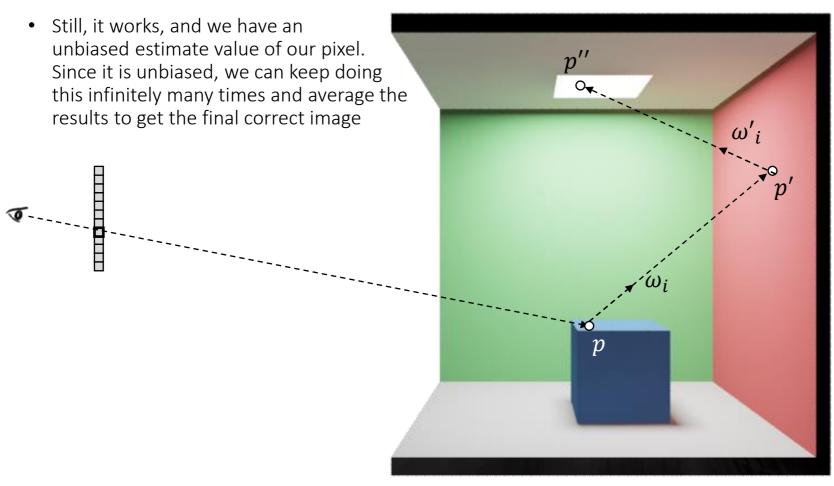
$$L_o(p,\omega_o) \approx 0 + 2\pi f_r(p,\omega_i,\omega_o)[0 + 2\pi f_r(p',\omega'_i,-\omega_i)L_o(p'',-\omega'_i)\cos\theta'_i]\cos\theta_i$$

- Choose a new random direction and evaluate the BRDF and cosine term
- Shoo a new ray to find the next ray on the path...



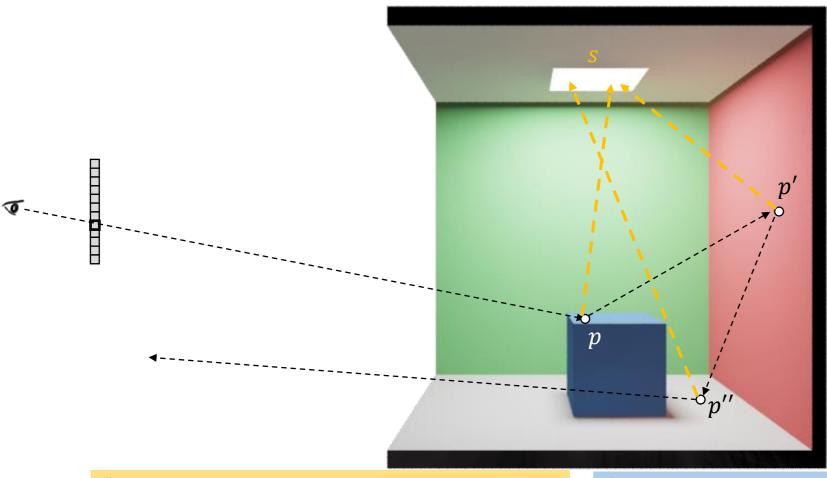
$$L_o(p,\omega_o) \approx 0 + 2\pi f_r(p,\omega_i,\omega_o)[0 + 2\pi f_r(p',\omega'_i,-\omega_i)L_e(p'',-\omega'_i)\cos\theta'_i]\cos\theta_i$$

- The problem is that it was pure luck that we hit a light-source so soon
- For the majority of paths, the contribution will be close to zero before we ever hit a light...



$$L_o(p,\omega_o) \approx 0 + 2\pi f_r(p,\omega_i,\omega_o)[0 + 2\pi f_r(p',\omega'_i,-\omega_i)L_e(p'',-\omega'_i)\cos\theta'_i]\cos\theta_i$$

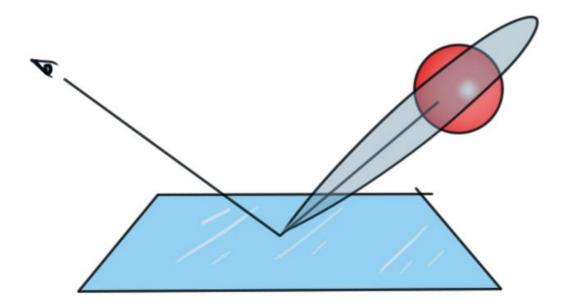
- The problem is that it was pure luck that we hit a light-source so soon
- Soluition: separate direct and indirect illumination



$$L_{o}(p,\omega_{o}) = \int_{S} f_{r}(p,p \to q,\omega_{o}) L_{e}(s,s \to p) G(p,s) V(p,s) ds + \int_{H^{2}(\vec{n})} f_{r}(p,\omega_{i},\omega_{o}) L_{i}(p,\omega_{i}) \cos\theta_{i} d\omega_{i}$$
direct
$$10 \text{ direct} \qquad 10 \text{ direct} \qquad 10$$

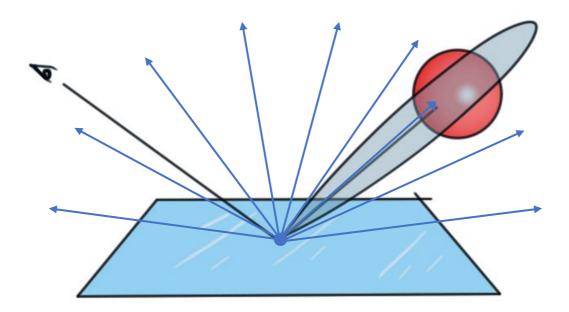
Importance Sampling

• So far we have sampled incoming light uniformly over the hemisphere. Why is that a bad idea?



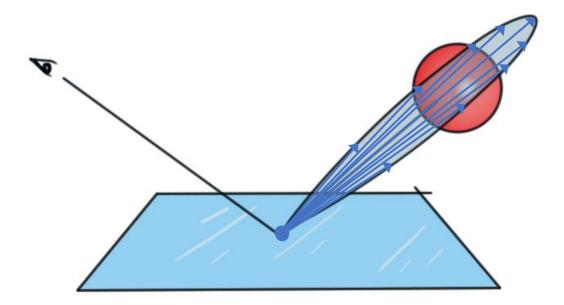
Importance Sampling

• So far we have sampled incoming light uniformly over the hemisphere. Why is that a bad idea?



Importance Sampling

- So far we have sampled incoming light uniformly over the hemisphere. Why is that a bad idea?
- We want to shoot more samples where the function we are integrating is high!
- One common type of importance sampling is to create a distribution that resembles the BRDF

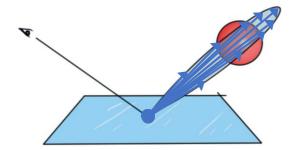


Importance Sampling

$$L_o(p, \omega_o) \approx L_e(p, \omega_o) + \frac{1}{N} \sum_{i=0}^{N} \frac{f_r(p, \omega_i, \omega_o) L_i(p, \omega_i) \cos \theta_i}{p(\omega_i)}$$

- We need to make sure our PDF is not low where the function we are sampling can be high
 - Or we will accumulate samples with extremely high variance
- Example: We can always generate samples with cosine distribution:

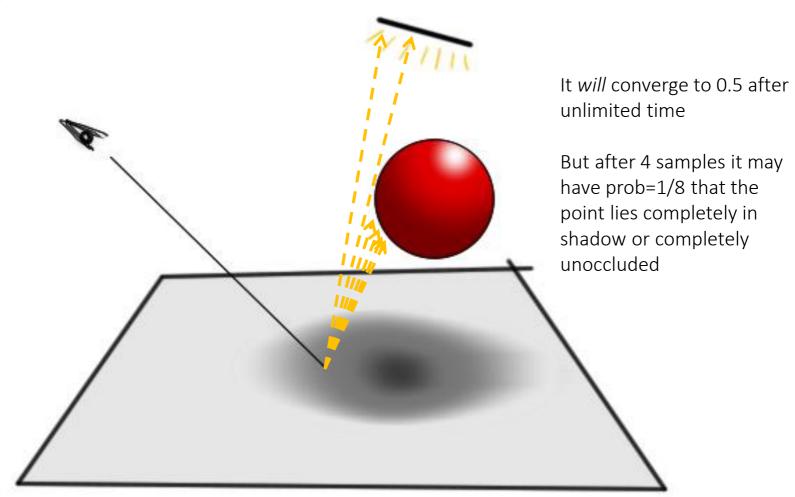
$$L_o(p,\omega_o) \approx L_e(p,\omega_o) + \frac{1}{N} \sum_{i=0}^{N} \frac{f_r(p,\omega_i,\omega_o) L_i(p,\omega_i) \cos\theta_i}{\frac{\cos\theta_i}{\pi}} = \frac{\pi}{N} \sum_{i=0}^{N} f_r(p,\omega_i,\omega_o) L_i(p,\omega_i)$$



Stratified Sampling

Stratified Sampling

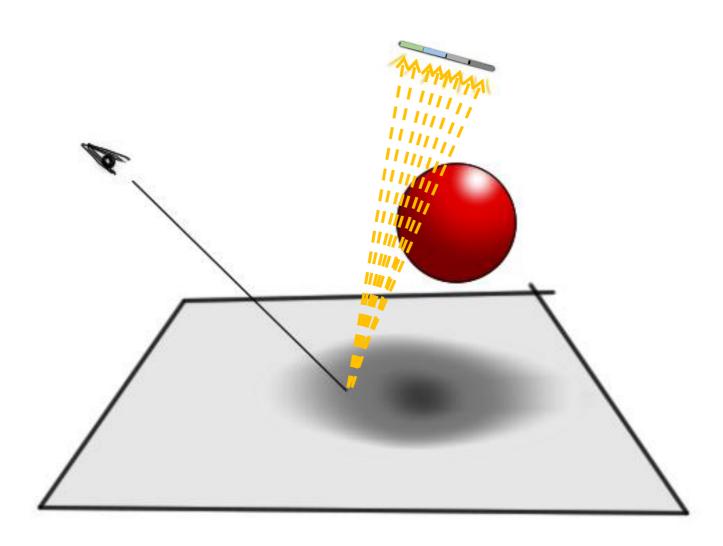
- Another standard variance reduction method
- When just choosing samples randomly over the domain, they may "clump" and take a long while to converge



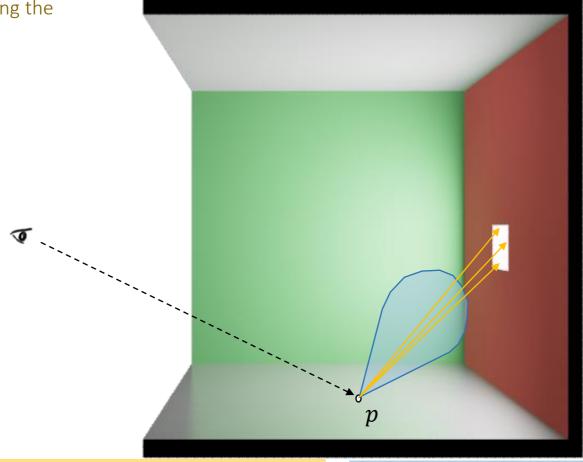
Stratified Sampling

Divide domain into "strata"

• Don't sample one strata again until all others have been sampled once

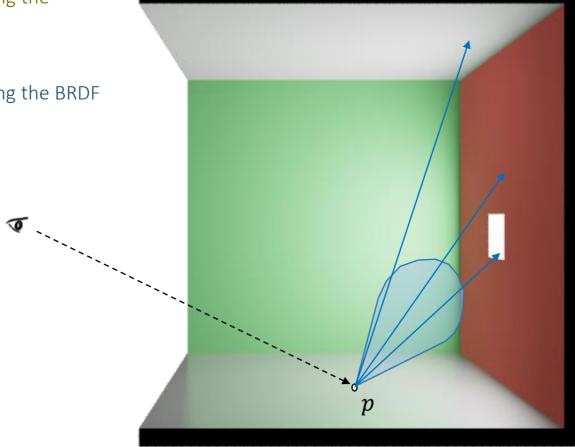


- Small light source, diffuse surface
- Direct Illumination
 - Stochastic sampling the light sources



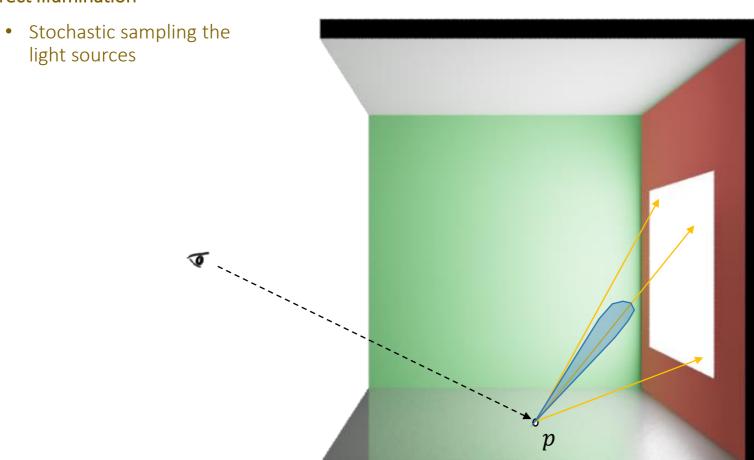
$$L_{o}(p,\omega_{o}) = \int_{S} f_{r}(p,p \to q,\omega_{o}) L_{e}(s,s \to p) G(p,s) V(p,s) ds + \int_{H^{2}(\vec{n})} f_{r}(p,\omega_{i},\omega_{o}) L_{i}(p,\omega_{i}) \cos\theta_{i} d\omega_{i}$$
direct
37

- Small light source, diffuse surface
- Direct Illumination
 - Stochastic sampling the light sources
- Indirect Illumination
 - Stochastic sampling the BRDF



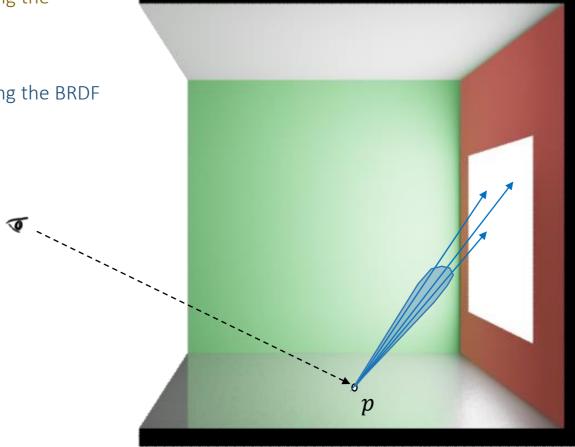
$$L_{o}(p,\omega_{o}) = \int_{S} f_{r}(p,p \to q,\omega_{o}) L_{e}(s,s \to p) G(p,s) V(p,s) ds + \int_{H^{2}(\vec{n})} f_{r}(p,\omega_{i},\omega_{o}) L_{i}(p,\omega_{i}) \cos\theta_{i} d\omega_{i}$$
direct
$$38$$

- Problem: large light source, specullar surface
- Direct Illumination

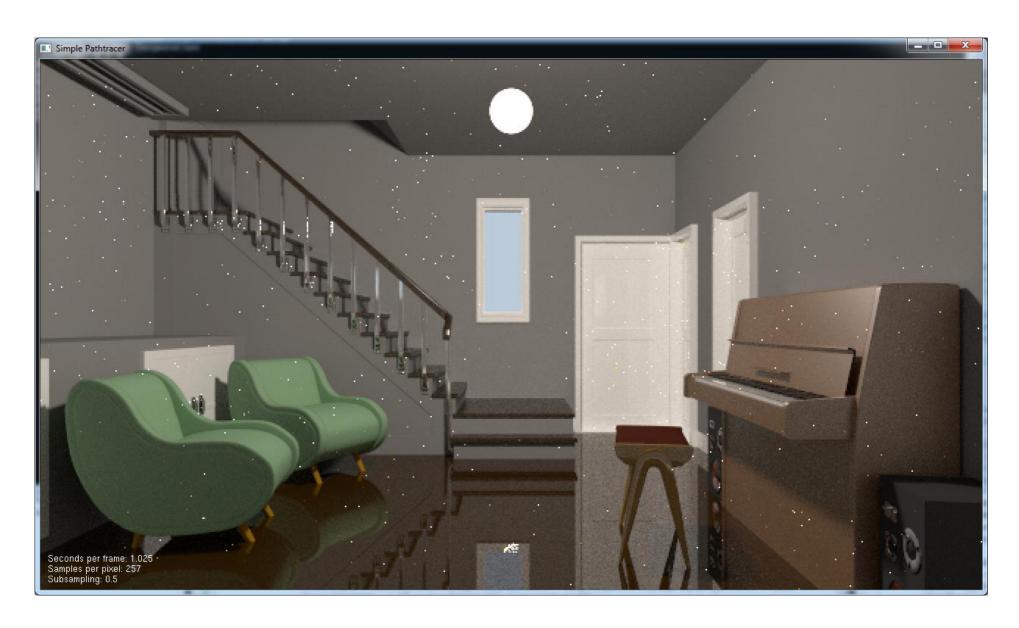


$$L_{o}(p,\omega_{o}) = \int_{S} f_{r}(p,p \to q,\omega_{o}) L_{e}(s,s \to p) G(p,s) V(p,s) ds + \int_{H^{2}(\vec{n})} f_{r}(p,\omega_{i},\omega_{o}) L_{i}(p,\omega_{i}) \cos\theta_{i} d\omega_{i}$$
direct
$$\frac{1}{2} \int_{S} f_{r}(p,p \to q,\omega_{o}) L_{e}(s,s \to p) G(p,s) V(p,s) ds}{\text{direct}} + \int_{H^{2}(\vec{n})} f_{r}(p,\omega_{i},\omega_{o}) L_{i}(p,\omega_{i}) \cos\theta_{i} d\omega_{i}$$

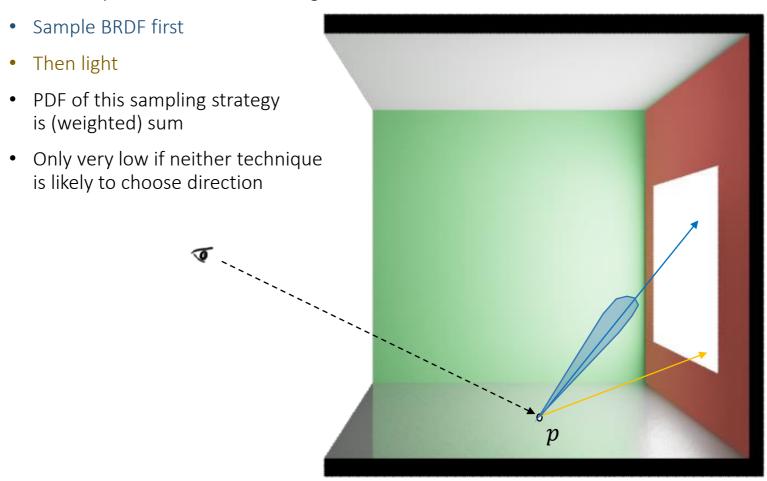
- Problem: large light source, specullar surface
- Direct Illumination
 - Stochastic sampling the light sources
- Indirect Illumination
 - Stochastic sampling the BRDF

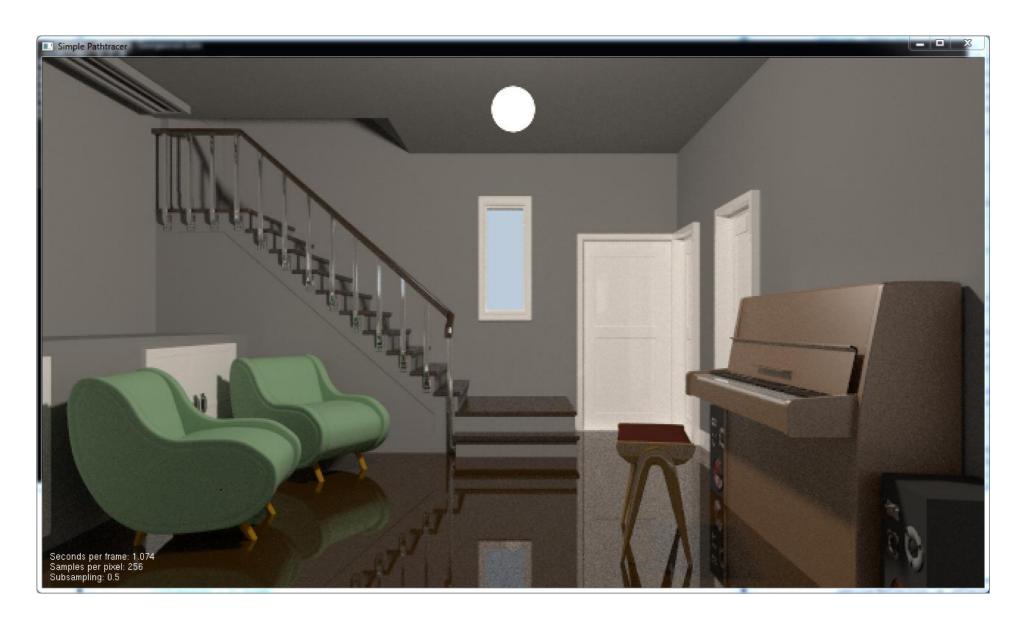


$$L_{o}(p,\omega_{o}) = \int_{S} f_{r}(p,p \to q,\omega_{o}) L_{e}(s,s \to p) G(p,s) V(p,s) ds + \int_{H^{2}(\vec{n})} f_{r}(p,\omega_{i},\omega_{o}) L_{i}(p,\omega_{i}) \cos\theta_{i} d\omega_{i}$$
direct
$$direct$$
40



- Problem: large light source, specullar surface
- Solution: Sample both BRDF and the light source

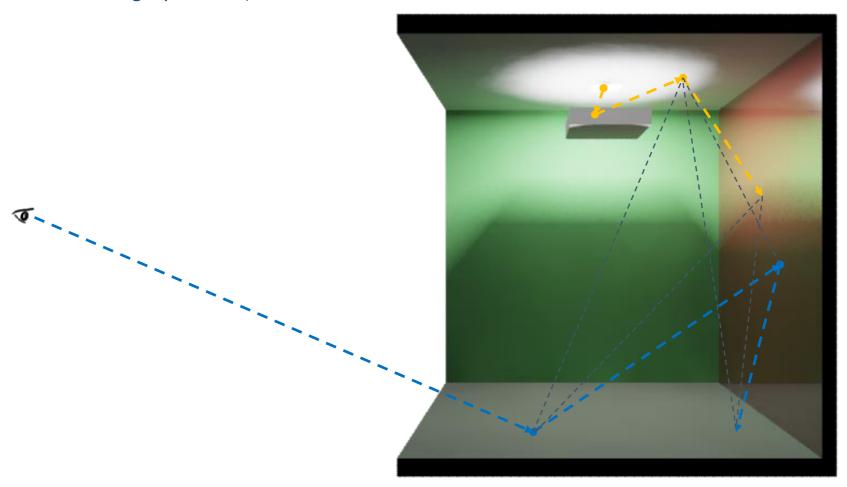




Bidirectional Path Tracing

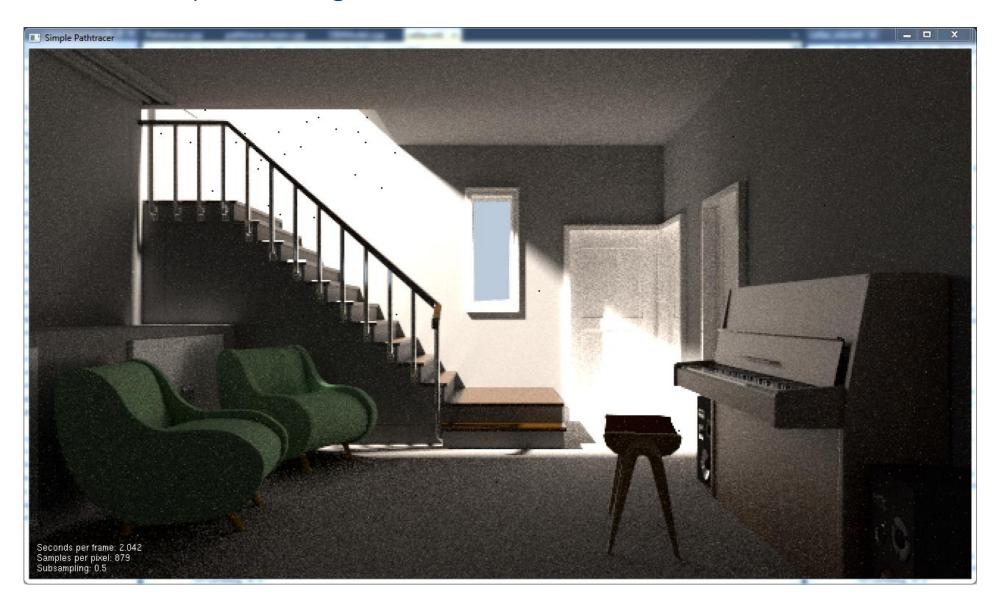
Bidirectional path tracing is a combination of

- Shooting rays from the light sources and creating paths in the scene
- Gathering rays from a point on a surface



Bidirectional Path Tracing

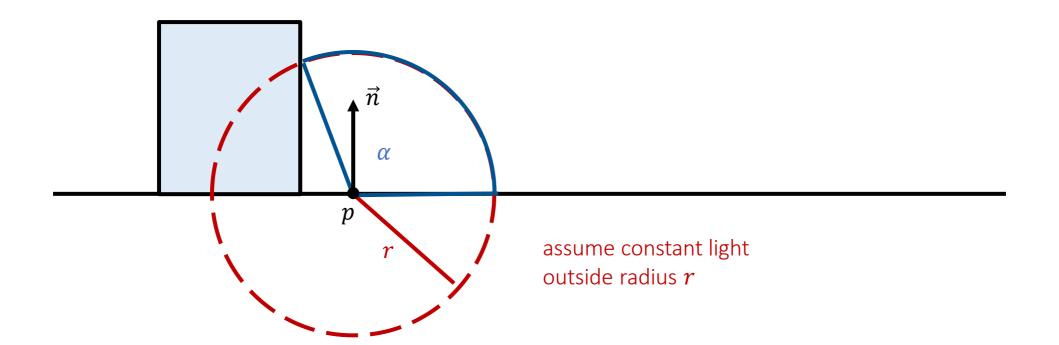
Bidirectional path tracing



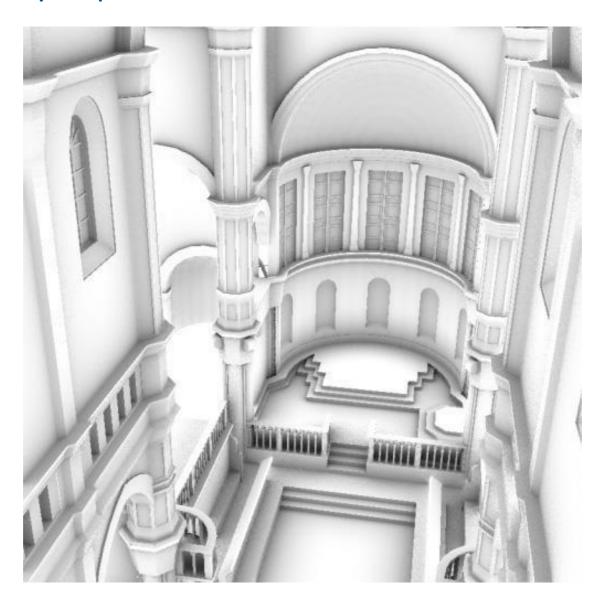
Ambient Occlusion

Calculates shadows against assumed constant ambient illumination

- Idea: in most environments, multiple light bounces lead to a very smooth component in the overall illumination
- For this component, incident light on a point is proportional to the part of the environment (opening angle) visible from the point
- Describes well contact shadows, dark corners

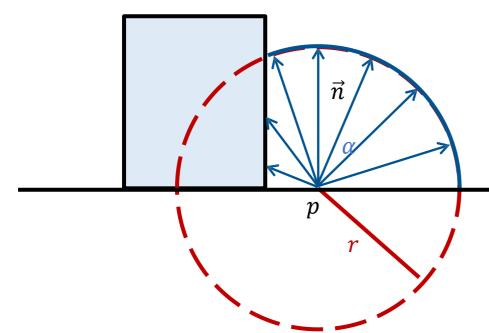


Example: visibility map

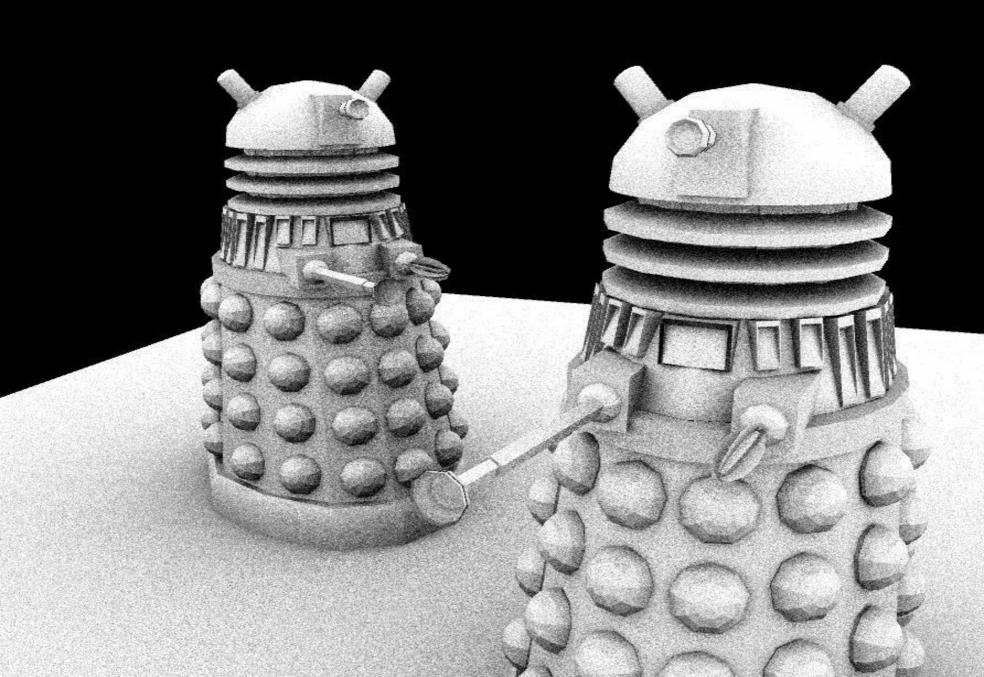


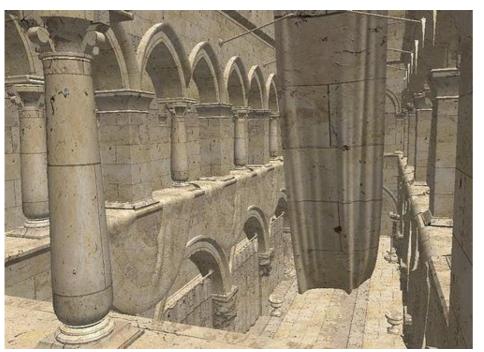
Computation using Ray-Tracing is straightforward

- Start at point p
- Sample N directions $(\omega_1, \omega_2, ..., \omega_N)$ from upper hemisphere (e.g. using cosine-weighted hemisphere sampler)
- Transform the samples from their coordinate to the object's coordinate system
- Shot shadow rays from p to ω_i with maximum length r (i.e.: ray.t = r)
- · Count how many directions are occluded



assume constant light outside radius r





Without ambient occlusion



With ambient occlusion

